EPSI

Embracing Change Affordably and Reliably

Austin Energy

Arshad Mansoor President & CEO, EPRI May 16th, 2024

EPRI Born in a Blackout

Independent, non-profit, center for public interest research

New York City: The Great Northeast Blackout, 1965

Mission

Advancing safe, reliable, affordable, and clean energy for society through global collaboration, science and technology innovation, and applied research.

Vision

Together...Shaping the Future of Clean Energy

Power of Collaboration

Leveraging Research Funds (~460M/year), industry expertise, academia and National Labs, state and federal dollars

Global Presence

Over 40 countries participate in EPRI overall research, development, and demonstration activities.

DECADE OF CHANGE WHAT 2030 COULD LOOK LIKE

Extreme Weather

1-in-100-year events are now 1-in-10

Renewables 3X to 4X growth by 2030

Electric Transportation ~1/2 of new car and fleet sales electric

Critical Minerals

transitioning from fuel to material dependent system

± **≡ ≡ ≡ ≡**

Grid Hardening & Community Resilience

Resource Adequacy Flexibility

Societal Dependance Reliable Electricity

Critical Mineral Supply Chain

© 2024 Electric Power Research Institute, Inc. All rights reserved

FORWARD RADAR: Emerging Opportunities

and Challenges

Regional Reindustrialization: Long Term Planning

Generative AI/NLP

Energy Security:

Moving from a Fuel Rich Energy System to Material Rich Energy System

Physical Security

Bypassing the Grid: Behind the Meter Hydrogen, Liquid Fuel, Data Center, etc.

Unprecedented Electricity Demand Growth

Al Bonanza

Data Center Operation is one of the fastest growing industries worldwide.

Other growing demand includes EV and heat pump adoption, Battery manufacturing

Growth is geographically concentrated.

Seven "point demand" states in the US account for ~75% of national data center load. This trend is evident internationally as well.

Data Center demand is challenging to project.

Generative AI models are more energy intensive than the data retrieval, streaming, and communications that drove previous data center growth.

New Data Centers represent large point load.

Capacities range from 100-1000 megawatts.

EPRI has developed a Roadmap to Support Rapid Data Center Expansion

© 2024 Electric Power Research Institute, Inc. All rights reserved.

Al is Driving a Third Wave of Data Center Growth

© 2024 Electric Power Research Institute, Inc. All rights reserved.

EPRI

Duck, Duck, Goose, CAISO 2023

CAISO Net Demand (PV Effect) 2023 Representative Days for each Month

Electrification: Significant Winter Peak & Load Loss Risk

Early Signs of Reliability Challenges

Operator-Initiated Firm Load Shed

Federal Emergency Power Act Use

Past 2 Decades	2000	2002	2003	2005	2005	2017	2017	2020	2020	9
Past 2 Years	2021	2021	2022	2022	2022	2022	2022	2022	2022	9
Location:	СА	ТХ		NY	PJM	Oth	er			

For today and the foreseeable future we need reliable dispatchable generation to fill in energy gaps that occur over daily, weekly, and seasonal periods

2030 STRATEGIC IMPERATIVES NEW THINKING, NEW APPROACHES

Maximize **Existing** Resource Utilization

\bigcirc	合
	<u> </u>

Enhance Grid

Adaptability

and **Resilience**

Climate

н. т		
2		
_		

	Π
CCUS	

Double Down on Energy Innovation

FAST FORWARD TO 2030 WHAT IF...

Ŗ

CUSTOMER-OWNED APPLIANCES ARRIVE GRID-CONNECTED In this future, each customer brings

of controllable load.

EVERY NEW WATER HEATER AND A/C INCENTIVIZES DEMAND-RESPONSE PROGRAM PARTICIPATION

REALIZING THIS VISION BY 2030 REQUIRES A COMPREHENSIVE STRATEGY NOW

.<u>.</u>.

Transmission Grid Enhancing Technologies (GETs)

Today's T&D Investments

Advanced technologies will have a much greater portion of tomorrow's T&D Investments

Ubiquitous Comms Systems & Cyber Underpin GETs

Challenges Need to Overcome to Realize Longer Term Benefits

epe

Shared Integrated Grid (IG) . . .

© 2024 Electric Power Research Institute, Inc. All rights reserved.

Communication and Digital Technologies are the Foundation for the Shared Energy Economy

ENABLING A SHARED ENERGY ECONOMY

Innovation Needs:

Regulatory

Investments in shared customer

resources benefit all

& Planning Customer Integrated, Engagement system-level approach

Grid

Operations

 \oplus

Greater choice, comfort, convenience,

control

Affinity **Partnership** From tech

companies to the

environmental

iustice

community

Ŀт‡

Integrated Grid Ubiquitous communication and DERMS integration

2030 STRATEGIC IMPERATIVES NEW THINKING, NEW APPROACHES

Maximize Existing Resource Utilization

Enhance Grid

Adaptability

and **Resilience**

Climate

\land	
-	
2	C

		-
ccus	•	V

Double Down on Energy Innovation

Grid of the Future Prepared for Weather of the Future

Climate change requires updating the technical basis for designing, planning, and operating the grid.

Labs Ground our Research

EPRI Labs at Lenox, MA (pictured), Charlotte, NC, Knoxville, TN

ට 2024 Electric Power Research Institute, Inc. All rights reserve

<u>EbG</u>

Labs Ground our Research

EPRI Labs at Lenox, MA (pictured), Charlotte, NC, Knoxville, TN

ට 2024 Electric Power Research Institute, Inc. All rights reserve

2030 STRATEGIC IMPERATIVES NEW THINKING, NEW APPROACHES

Maximize Existing Resource Utilization

\bigcirc	
	A

Enhance Grid

Adaptability

and **Resilience**

Climate

H ₂	2
ccus]• (

Double Down on Energy Innovation

Emerging Low-Carbon Dispatch Technology Critical to the Clean Energy Transition

MID-LONG DURATION Weekly Use Case multi-day renewables gap

LONG DURATION

Seasonal Use Case designing to meet load profile

Renewables overgeneration in certain seasons and shortfall in others.

Adding in seasonal energy storage allows matching generation profile to load.

© 2024 Electric Power Research Institute, Inc. All rights reserved.

epei

TRANSITION TIMING Nascent Technologies demand Deliberate Deployment

Accelerating the energy transition before emerging technologies are ready to scale can amplify already notable reliability challenges.

Grid Scale Battery Safety: The Big Picture

Global Grid-Scale BESS Deployment and Failure Statistics

- Figure shows utility and C&I failure incidents
- Only verified incidents with public data

Sources: (1) EPRI Failure Incident Database, (2) Wood Mackenzie. Data as of 12/31/23.

Between 2018-2023, 97% reduction in failure rate

"Energy Wallet"

Leveraging the Energy Transition to Improve Affordability

Done Right...the Clean Energy Transition will Reduce Customers Energy Wallet

Energy Transition Reduces Average Household Energy Bills with Greater Savings Over Time

Home Electrification, EV, and Maintenance Savings:

Source: Department of Commerce, 2021 Consumer Expenditure Survey.

Decisions made 20 years ago are impacting today

Decisions made today will impact the clean energy transition in 2050