Phase 2 Evaluation and Engineering Assessment and Golf Course Renovation Harry L. Jones Sr. Golf Course

Ratcliffe Golf Services, Inc. 800 Radio Road Charlotte, North Carolina 28216

02217302.00 | October 2, 2018

2520 Whitehall Park Drive, Suite 450 Charlotte, NC 28273 704-504-3107

Table of Contents

Sect	ion	Page
1	INTRODUCTION AND BACKGROUND	1
	Background	1
	Phase 1 Report Overview	1
	Phase 2 Report Overview	2
2	DRILLING PROGRAM	3
3	SOIL SURCHARGE ANALYSIS	4
	Overview	4
	Typical Soil Surcharge Approach	4
	Cart Paths	7
4	SOIL STOCKPILE ASSESSMENT	8
5	PERMITTING REQUIREMENTS	9
6	PROPOSED GOLF COURSE RENOVATION BY RON GARL GOLF DESIGN	
	Overview	
	Course Design – The Theme: The Journey with Harry L. Jones, Sr. Golf Course	
	The Design – The Master Plan	11
7	COST ESTIMATES	
	Golf Course Closure	
	Golf Course Renovation Cost Estimate	
8	FINANCIAL PROJECTIONS AND FEASIBILTY aNALYSIS	
	Overview	
	Analysis: Option 1, Close the Course	
	Analysis: Option 2, Close 9 Holes, Renovate the Remaining 9 Holes	
	Analysis: Option 3, Renovate all 18 Holes	
9	CONCLUSION AND NEXT STEPS - PHASE III	

Figures

Figure 1.	Typical Settlement Plate Details	ō
Figure 2.	Surcharge Settlement Monitoring Example	6

Appendices

Appendix A	Drilling Work Plan and Boring Results
Appendix B	Golf Course Routing Plan
Appendix C	Preliminary Cost Estimates

1 INTRODUCTION AND BACKGROUND

Mecklenburg Park and Recreation Department has determined that significant issues are affecting the operation of one of their public golf facilities, the Harry L. Jones, Sr. Golf Course located at 1525 W. Tyvola Rd., Charlotte, NC 28217. They have directed Ratcliffe Golf Services (Ratcliffe), the firm contracted with managing the property, to move forward with an evaluation to determine the best course of action for the facility. Ratcliffe retained SCS Engineers, PC to provide engineering services, Ron Garl Golf Design to serve as golf course architect, and. JJKeegan+ to conduct a financial analysis of each alternative proposed in the study.

This report, Phase 2 Evaluation and Engineering Assessment and Golf Course Renovation, was prepared by SCS Engineers, Ron Garl Golf Design and JJKeegan+. This report provides following:

- A summary of our field investigation activities
- Results from our drilling program
- An engineering approach to mitigate settlement due to waste decomposition
- Permitting requirements
- Proposed golf course renovation design
- Construction cost estimates
- Summary of the JJKeegan+ financial feasibility analysis
- Discussion and proposals for next steps (Phase III).

BACKGROUND

The Harry L. Jones Sr. Golf Course (formerly named Renaissance Park Golf Course) is located at 1525 West Tyvola Road in Charlotte North Carolina. The course is owned by the City of Charlotte (City) and managed by the Mecklenburg County Parks and Recreation Department (MCPR). The golf course was designed by golf course architect Mike Hurdzan and built in 1986.

Prior to redevelopment of the property as a golf course, the site was a municipal solid waste disposal facility known as the York Road Landfill. The City operated the landfill from approximately 1968 to 1986. Approximately 6 million tons of waste are reported to have been disposed at the landfill¹. No waste has been removed from site to our knowledge and it was closed and capped in 1987. The waste disposal operations have been reported by others as occurring in six areas, referred to as Area A through Area F. Based on the historical disposal limits, approximately 128 acres of the site was used for landfilling activities. According to Ref. #1 cited below, a geomembrane liner was installed below the greens.

PHASE 1 REPORT OVERVIEW

Ratcliffe Golf Services, Inc. retained SCS Engineers to conduct an initial assessment of the Renaissance Park Golf Course in support of a potential significant course renovation project. The focus of our Phase 1 work was to confirm the extent of impact of landfill-related settling on the golf course design and course operations, and outline a course of action to determine the impact that existing landfill disposal areas would have on any renovation project.

¹ Article titled "Garbage to Golf: Too Much Trash? Too Little Golf", Schmidt, Edward, Jr. (Golf Journal: Official Publication of the United States Golf Association, pp. 35-38; Jan-1991.

The Phase 1 Report (titled "Preliminary Evaluation and Engineering Assessment Renaissance Park Golf Course", August 2017) provided a summary of our initial site assessment and discusses recommendations for addressing proposed improvements to golf course. The primary objective during Phase 1 was to develop an overall Existing Conditions Site Plan that depicts current site conditions overlaid on key golf course features and to gather information on the history of landfilling activities.

PHASE 2 REPORT OVERVIEW

SCS Engineers was retained to gather additional site-specific information regarding waste depths and waste limits, provide preliminary engineering and settlement analyses, and develop conceptual construction cost estimates for various options. These options included closing the golf course. Phase 2 assignments covered geotechnical and civil engineering evaluations to allow development of conceptual remedial designs that specifically address waste settlement (short and long term), stormwater management, and biogas management in landfilled areas.

Specific items covered during our Phase 2 assignments included the following:

- Preparation of a Work Plan that describes drilling activities to assess waste depth and limits of waste at critical locations, and general characteristics of the waste (appearance, moisture, degree of decomposition, composition).
- Subcontract with a drilling company to drill 17 boreholes.
- Update the Site Plan with new topography (provided by others).
- Develop a soil surcharge (preloading) approach to stabilize waste in certain areas, and associated costs and schedule for typical fairway remedial repair(s). Prepare memorandum with figures and standard details.
- Evaluate suitability and costs of other ground improvement methods including Rapid Impact Compaction (RIC), Deep Dynamic Compaction (DDC) and geopiers, and to develop preliminary cost estimates.
- Estimate landfill post closure costs if the golf course was closed instead of redeveloped.
- Develop preliminary construction costs estimates for soil surcharging, use of geogrids for soil fill placement, and installation of impervious flexible membrane liners (FML) for tees and greens to minimize the effects of methane gas.
- Provide recommendations for further investigations to support the golf course renovation design.
- Develop a preliminary Master Plan for potential redevelopment of the golf course, taking into consideration the current site conditions and potential mitigation steps necessary to address landfill-related issues. Ron Garl Golf Design headed the development of this Master Plan with input from SCS Engineers as well as JJKeegan+.
- A long-term financial evaluation of three proposed remediation strategies for the site, taking into consideration the estimated costs associated with each, the current revenue

realized at the course and projections of future income based on potential renovation work.

2 DRILLING PROGRAM

On December 4, 5, and 6, 2017 seventeen (17) borings where drilled at the site. SCS subcontracted SAEDACCO to conduct the drilling. A track mounted auger-type drill rig was used to advance 4-inch diameter hollow stem auger holes to measure waste depth and observe waste characteristics at key locations on the course/landfill. Prior to drilling, SCS prepared a Work Plan. A copy of the work Plan is included in **Appendix A**.

A site plan showing the boring locations, description of the waste encountered, and depth of boring is provided in **Appendix A**. Waste was encountered in twelve (12) of the 17 locations.

In general, the waste encountered appeared to be highly decomposed, wet, and lacking organic materials. This is indicative of mixed organic municipal solid waste (MSW) more than about 30 years old. Waste cuttings from the borings were collected and transported to the Republic Services' Charlotte Motor Speedway landfill in Concord, North Carolina for disposal in a lined permitted MSW landfill.

Prior to transporting the waste cuttings, samples were collected and shipped to Shealy Environmental Services, Inc. and testing per the requirements of Republic Services. The following tests were run on the waste cuttings:

- EPA Method 8260B Toxicity Characteristic Leaching Potential (TCLP) Volatiles.
- EPA Method 8270D TCLP Semi-volatiles
- EPA Method 8081B TCLP Pesticides
- EPA Method 6010D Metals
- EPA Method 8151A TCLP Herbicides
- EAP Method 8082A TCLP Polychlorinated biphenyl (PCB)

Copies of the analytical test results and disposal manifest are provided in Appendix A.

3 SOIL SURCHARGE ANALYSIS

OVERVIEW

Surcharging is widely used and reliable method of improving soft ground conditions, including for landfilled waste. The surcharge process involves placing several feet of soil across a surface or area to surcharge (pre-load) and compress the waste over time. The surcharge remains in place for a period of time (6 to 12 months, more or less) depending on the compressibility properties of the waste and the depth. The weight (height) of the soil surcharge is selected to be high enough to compresses the underlying soft soil or waste such that when the surcharge is removed, the potential for future settlement is within tolerable limits.

The height of the surcharge, and lateral extent, are functions of the proposed loads and tolerable rate and magnitude of future settlement. Typical guidance is for a surcharge loading (pressure) to be equal to 1.0 to 2.0 times the planned pressure of the new structure (load), depending on the type of structure and acceptable level of post-construction settlement. The surcharge remains in place until the rate of settlement is reduced to a magnitude deemed suitable for the structure.

An important advantage of surcharging over the other methods is that monitoring of settlement rates can be performed using basic survey methods and becomes an integral as part of the method. Monitoring allows the engineer to track the progress of settlement and make quantitatively based predictions as to when the surcharge may be removed and how much potential for settlement remains in the future. Typically, the initial rate and magnitude of surcharge-induced settlement will be relatively large; however, as time passes, the rate and magnitude will be reduced and eventually begin to level off. The disadvantage of surcharging is the time to complete the surcharge is not known until several sets of readings are available, and cost of bringing in and removing fill may be high in areas where fill is costly, or not readily available near the site.

TYPICAL SOIL SURCHARGE APPROACH

For executing a surcharge approach to stabilizing old landfilled areas, the following steps are recommended:

- 1. <u>Surcharge Area Delineation</u>: Delineate the physical limits of the surcharge area by field survey; place stakes or markers as needed to guide the earthwork contractor. In general, the outer edge of the surcharge (defined as the toe of the surcharge slope) should extend up to about 10 feet beyond the limits of the area designated for surcharging.
- 2. <u>Site Preparation</u>: Prepare the area selected for surcharge by installing silt fence as required by regulation, strip and grub surface vegetation including grasses, brush, trees and large roots that may be present. Stockpile stripped vegetation for subsequent reuse. If not removed, vegetative and organic materials will decompose and generate methane gas over time and create a potentially weak horizontal layer. The prepared surface area should be graded, and surface compacted to allow for drainage and as necessary to accommodate final design grades.
- 3. <u>Pre-Surcharge Survey and Settlement Plate Installations:</u> After the site limits have been established and site prepared, and before placement of surcharge material, the area should be surveyed for elevation and a topographic map prepared for the record. Settlement plates

should be placed at that time and it is critical that they be surveyed for location and elevation to establish baseline conditions.

See Figure 1 for a typical settlement plate detail. Both the bottom plate and top of the metal rod for each settlement plate should be surveyed at the beginning. After surcharging begins, only the top metal rod requires surveying. The selected surveyor should establish at least one elevation bench mark located completely off of the site and which will not be impacted by the surcharge or landfill settlement, and use that benchmark for all surveying. To the extent possible, the same survey crew and equipment also be used to minimize data noise.

The number and location of settlement places is shown on the design drawings. In general, a sufficient plate will be located within surcharged areas to allow for measurement of settlement (i.e., waste compression) over the full period of the surcharge, and allow for making future settlement predictions. It is important to anticipate that up to about half of the settlement plates may be damaged or destroyed by natural or man-made forces during the surcharge period, and the total number of plates installed should take that into account.

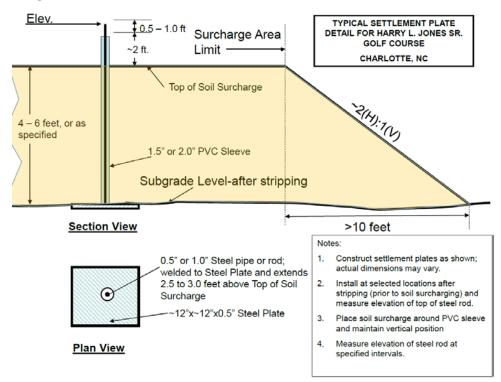


Figure 1. Typical Settlement Plate Details

4. <u>Surcharge Placement:</u> On-site stockpiled soil designated for surcharging shall be placed within the designated limits and to the desired thickness using conventional earthmoving equipment. Surcharge soil should primarily be inorganic, unsaturated, and unfrozen. As the lowermost one foot or more of the surcharge soil may remain in place and form part of the subgrade for future turf, tee boxes and green areas, special care should be taken to selecting suitable material. While compaction of the surcharge material is not essential, the material shall be placed in maximum 2 to 3 foot lifts so as to minimize the potential for voids

and to maximize the total weight of the surcharge. Field density testing is also not required, but the engineer and contractor should provide estimates of the weight of material placed.

- 5. <u>Settlement Plate Monitoring</u>: As noted in step 3, it is critical that each settlement plate be surveyed prior to placement of surcharge material to establish baseline conditions and that settlement plate readings be performed using the same equipment and methods from the beginning. Surveys should be performed to within 0.01 feet accuracy or about 1/8 inch. Readings should be taken at approximately the following intervals:
 - Initial (baseline) readings prior to placement of surcharge material
 - One to two weeks after completion of surcharge placement
 - Four weeks after completion of surcharge placement
 - Quarterly (12 week) intervals thereafter or until elevation change are within limits established by engineer.
- 6. <u>Settlement Plate Data Evaluation</u>: Survey information should be tabulated on a spreadsheet and provided to the engineer for evaluation. The information shall include the following:
 - Settlement plate number and coordinates (location)
 - Initial (baseline) elevation of base plate and top metal rod
 - Date of survey, weather, equipment and crew designation
 - Bench mark identification
 - Elevation of top of rod (base plate is covered up)
 - Comments (condition of settlement plate, distortion, damage, etc.)

During the surcharge period, the engineer will be evaluating the data and creating graphs depicting settlement versus time as shown on Figure 2.

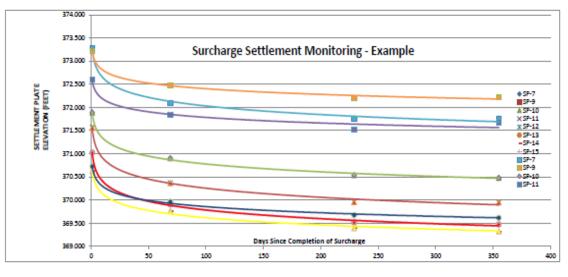


Figure 2. Surcharge Settlement Monitoring Example

7. <u>Surcharge Removal</u>: Based on the trends of settlement, design goals and other factors, the engineer will prepare a report describing the results of the surcharging and recommendation for removal and regrading of the area.

CART PATHS

The existing cart paths at the course have been deteriorating for several years due to settlement and poor drainage. It is planned that new cart paths for the course renovation will be engineered to minimize the effects of settlement. The following three options have been identified for stabilizing the subsurface for the new cart paths:

- Rapid Impact Compaction (RIC)
- Soil Surcharge
- Standard compaction equipment

Stabilizing the subsurface should cause settlement of 2 to 3 feet. Engineered fill will be placed and compacted and the use of geogrids will be explored (in Phase 3) to help spread the cart path loads. It is also possible that localized areas will require waste removal to further aid in stabilizing the subsurface. Further evaluation for cart paths will be explored during the final engineering and design phase.

4 SOIL STOCKPILE ASSESSMENT

The soil stockpile, which was placed between 2013 and 2014, is located west of Hole No. 5 alongside Sugar Creek. As stated above, the stock pile contains approximately 240,000 cubic yards of soil. The footprint of the stockpile is about 15 acres and is situated over landfilled areas.

During our site reconnaissance, SCS personnel examined portions of the stockpile. Overall, there is a good vegetative cover that includes young poplar trees, brush, and woody plants. The top area and slopes were viewed and overall the condition of the vegetative cover was suitable and surface erosion was minimal. The terraces on the northwest side of the stockpile appear intact, did not exhibit obvious signs of instability, and storm water pipes were in-place. The southern toe of slope, which is heavily vegetated, was also examined. There were no obvious signs of slope instability, sloughing, excess erosion, exposed waste, or landfill leachate seepage.

The overall slope of the stockpile sides range from 4 horizontal to 1 vertical (4H:1V) to 2.2H:1V. Slopes between terraces on the west side are in the 1.5H:1V. Although the slopes appear steep, the addition of the terraces flatten out the overall slope. These slopes are similar to those at the end of the driving range which have been in place for years.

SCS recommends removing some of the soil from the stockpile to flatten the overall slope to a 3H:1V range. Furthermore, a slope stability analysis should be performed during the Phase 3 engineering evaluations.

In addition to the site reconnaissance, SCS reviewed historical data from groundwater monitoring wells in the vicinity of the soil stockpile before and after the soil stockpile was placed (*Semi-Annual Monitoring Report, First Half 2018, Former York Road Landfill, Geosyntec, May 2018*). The groundwater wells reviewed included: YRW-10C, DDW-01, DDW-01A, DDW-02. Based on our review, the placement of the soil stockpile caused no impact to groundwater quality. We also reviewed the four methane gas probes in the vicinity of the soil stockpile (#32, 33, 34, and 35). Methane gas was not detected in any of these probes.

The material in the stockpile is an asset and should be used for filling and grading when mitigating the landfill settlement issues. Based on the information reviewed to date, there appears to be no adverse conditions caused by the soil stockpile.

5 PERMITTING REQUIREMENTS

The York Road Landfill was closed in 1987 according to available records. The City of Charlotte, which owns the landfill, is responsible for environmental monitoring (groundwater, methane gas migration, and cover integrity) at the landfill.

The following notifications should be made prior to any construction at the site:

- Notify the City of Charlotte, Environmental & Property Management. Since the City of Charlotte is the owner of the landfill all permit applications and agency notifications should be reviewed by the City.
- North Carolina Department of Environmental Quality (NCDEQ), Energy, Mineral and Land Resources, Mooresville office for Erosion and Sediment Control permitting.
- North Carolina Department of Environmental Quality (NCDEQ), Solid Waste Section, Asheville office.

SCS recommends coordinating all agency notifications with the City of Charlotte. Furthermore, we recommend meeting with NCDEQ early during the Phase 3 portion of the project to present the overall concept and discuss permitting strategies.

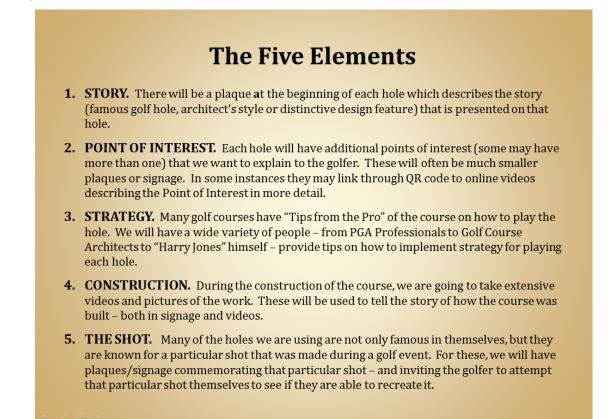
6 PROPOSED GOLF COURSE RENOVATION BY RON GARL GOLF DESIGN

OVERVIEW

Ron Garl Golf Design was tasked with developing a Master Plan along with refining preliminary cost estimates for both a nine-hole renovation and eighteen-hole renovation. This project presented unique challenges in that it not only needed to address design elements that would make the golf course more appealing to the market it served, it needed to simultaneously address the specific landfill settling issues that have decimated the existing golf course.

The first step in this process was to develop a concept or overriding theme of the course that provided an experience that fulfilled the recommendations outlined in the study provided by JJKeegan+. Once that was defined, design work began on the overall Master Plan by focusing on specific holes for particular areas of the property. These holes needed to be carefully researched and designed in order to accommodate the existing topography as well as possible, while providing the opportunity to increase fill to accommodate the soil surcharge and removal with the least amount of time and expense. The final result is a unique and extremely promising golf course design that will have a wide appeal to the golfing public, and not only greatly improve the golfer experience, but contribute to the overall community and image of Charlotte and Mecklenburg County as well.

COURSE DESIGN – THE THEME: THE JOURNEY WITH HARRY L. JONES, SR. GOLF COURSE


Ron Garl has designed over 250 golf courses around the world, and has an industry wide reputation for building facilities that garner unique attention and wide-spread accolades. Tiger Wood's first win on the PGA Tour was at a Ron Garl design, as was his first International win. In analyzing the opportunity at the Harry L. Jones, Sr. Golf Course, Ron immediately recognized his challenge; he said "When a golfer comes to Charlotte, they currently say 'I wish I could play at the Quail Hollow Club'. When we get through with this course, they will say 'I wish I could play at the Harry L. Jones, Sr. Golf Course."

Fulfilling that goal in the design process required a multi-pronged approach. First, in response to the market research conducted by JJKeegan+, the course design was softened to make it more appealing to a wide range of golfers. Forced carries (which require a golfer to hit a shot over an obstacle such as a creek or lake) were removed as much as possible. Holes were shortened. Blind shots were removed.

Secondly, an overall theme was adopted in the design which focused on creating a golf *experience* rather than just providing a golf course to play. This went so far as to propose a slight alteration in the name of the facility, to The Journey with Harry L. Jones, Sr. Golf Course. In the new design, a golfer will not just be playing a golf course – they will be embarking on a Journey through golf course history and design, hosted by Harry L. Jones. This unique approach has never been done in this manner, and has an incredible appeal to golfers of all skill levels.

The underlying principle of this theme is that every hole tells a story. It may be inspired by a famous Golf Course Architect or one of his holes or a famous shot or a famous design feature that has been successfully used in the past. As the golfer plays the course, they learn about these stories, about

even about their own approach to the game of golf. The story of each hole is conveyed through as many as five elements:

THE DESIGN – THE MASTER PLAN

Once the theme was established, the task of designing a course that incorporated the five story elements into each hole began. This required hundreds of hours of research to find the right fit for each particular hole. First, the hole needed to fit within the overall routing plan for the property, as well as being suitable for the topography that existed before and after addressing the landfill settling issues. The hole needed to be significant enough in golf history to accommodate the five elements of the story. Ultimately one of the most critical considerations was making sure the hole would be a popular, fun hole for golfers to play.

The resultant Master Plan achieves the objectives set out in the initial meetings. It is a unique blend of holes with historically significant inspirations that will entertain golfers as well as inform them on a variety of topics that they probably did not fully understand. By using the five elements to tell the story, and basing each hole on an inspiration from a significant hole, person or even famous shot made in golf, the Journey with Harry L. Jones, Sr. Golf Course will be a "must play" golf course for every golfer in Charlotte, as well as those that travel to this area.

Appendix B. – Master Plan for The Journey with Harry L. Jones, Sr. Golf Course

7 COST ESTIMATES

GOLF COURSE CLOSURE

A cost estimate was prepared by SCS to address the long-term post-closure activities associated with the landfill if the golf course was closed. The post-closure cost estimate includes mowing, cover restoration, and reseeding. The cost for groundwater and methane probe monitoring were not included in this cost estimate since the City is required to conduct these regardless of the course status. The post-closure cost estimate is provided in **Appendix C, Attachment C-1**.

GOLF COURSE RENOVATION COST ESTIMATE

Two preliminary construction cost estimates were prepared to address the full 18-hole renovation of the golf course. Preliminary costs related to the golf course renovation (tees, greens, cart paths, irrigation system, grassing, bunkers, etc.) were prepared by Ron Garl Golf Design. This estimate is provided in **Appendix C, Attachment C-2**.

Cost related to the engineering challenges for the course renovation where prepared by SCS Engineers. These costs include, but not limited to, the following:

- RIC for portions of the cart paths to improve subsurface conditions
- Synthetic liners under tees and greens to protect from methane gas intrusion
- Soil surcharging to improve subsurface conditions.
- Surveying and monitoring of the soil surcharges during construction
- Geogrid reinforcement for cart path to improve stability and reduce differential settlement

The cost estimates along with key assumptions are provided in Appendix C, Attachment C-3.

Both construction cost estimates will be refined/updated during the development of the Final Construction Drawings and Specifications (Phase 3).

8 FINANCIAL PROJECTIONS AND FEASIBILTY ANALYSIS

OVERVIEW

JJKeegan+ was retained to perform an in-depth study of the Harry L. Jones, Sr. Golf Course operation, including a market evaluation of each of three possible courses of action regarding the property.

Utilizing a state-of-the-art analytic approach to demographics within a 10-mile radius of the property, JJKeegan+ founder Jim Keegan used cost estimates provided by SCS Engineers and Ron Garl Golf Design to analyze the potential return on investment of each proposed remedy.

The analysis included a site visit by Mr. Keegan, coupled with an extensive comparative market review where he visited the courses throughout the area considered to be competitors of the Harry L. Jones, Sr. Golf Course.

Mr. Keegan then conducted a Golfer Local Market Analysis utilizing the Mosaic profile of demographics within a 10-mile radius of the facility. These metrics yielded not only an extensive insight into the current demand for golf that exists in the study area, they provided guidance for the *type* of golf course that should be built in order to appeal to the widest range of potential customers in proximity to the course. This information was shared with Ron Garl Golf Design, who in turn incorporated the suggestions from Mr. Keegan's study into the Master Plan for the course.

For the financial return analysis, Mr. Keegan took into account the projected cost of each option and performed a study to determine the return on investment of each option. In the scenario where the course retained 9 holes and, in the scenario, where the course remained an 18 hole facility, he utilized existing revenue numbers and applied projections based on existing GLMA data, corrected for the suggested course improvements identified in the Mosaic profile analysis.

ANALYSIS: OPTION 1, CLOSE THE COURSE

The first potential course of action would be to simply close the course and allow the property to revert to the status of a closed landfill. This option entails certain one-time expenses of closure, and an annual maintenance of the property to meet post-closure permitting requirements. The financial analysis of this option was fairly straight-forward, requiring a totaling of expenses over the 30-year projected study period. The initial cost of preparing the course (\$150,000), combined with the annual cost of maintenance over the 30-year period (\$2,900,000) resulted in a net present-day loss of \$1,777,280.

Total Input Capital	-\$150,000
Accumulated Annual Return/Expense	-\$2,900,000
Total Return	-\$3,050,000
IRR	negative
Net Present Value	-\$1,777,280

Just Closing the Landfill Makes No Sense

ANALYSIS: OPTION 2, CLOSE 9 HOLES, RENOVATE THE REMAINING 9 HOLES

The first nine holes, as well as a portion of the 10th and 18th holes, are on the former landfill. Thus, the bulk of the "back" nine (holes 10 through 18) are not on landfill. Thus, it is possible to mitigate further issues related to landfill settling by closing the front nine and renovating the second nine into a course consisting of only nine holes.

Mr. Keegan determined that this course of action would result in a slightly better return over the course of the study period, but there is one variable that could make the 9-hole renovation less appealing than simply closing the entire facility: the continued maintenance of the landfill portion of the property.

While some expenses of closing the landfill holes could be mitigated during the renovation of the back nine (for example, the need to decommission the irrigation would supposedly be handled in the new irrigation system installation), the ongoing expense of maintenance of the closed holes would present some type of recurring expense. This was not factored in due to the unknown nature of that expense, and how it would be handled in conjunction with the maintenance of the remaining 9 holes.

The financial analysis of this option resulted in a total net return over the 30-year period of \$3,642,949, representing a net present-day value of \$199,625.

But Doesn't Maximize Investment Return **Close Landfill** 9-Hole **Total Input Capital** -\$150,000 -\$3,732,237 Accumulated Annual Return/Expense -\$2,900,000 \$7,375,186 **Total Return** -\$3,050,000 \$3,642,949 IRR negative 1.16%

-\$1,777,280

The Nine Hole Generates Positive Net Present Value

ANALYSIS: OPTION 3, RENOVATE ALL 18 HOLES

The third and final option for addressing the issues facing the Harry L. Jones Golf Course is a complete renovation of all 18 holes. This process would entail addressing the existing conditions found on the landfill/golf course and providing for engineering and design solutions that would mitigate, offset or otherwise reduce the risk of future impacts due to landfill related settling and other issues resulting from having a public golf operation on a landfill.

Net Present Value

\$199,625

Mr. Keegan utilized an array of tools he has developed to determine the potential revenue of the facility and extrapolated that out over the 30-year study period utilized in the analysis of the other options. Using the projected preliminary construction expense numbers from the Phase I study, he calculated that the total return over the study period would be \$6,155,401. The resultant Net Present Value of the 18-hole renovation option was \$606,513, leading to his conclusion that the renovation of the entire golf course was the most viable option from a financial analysis standpoint.

It is important to note that this analysis does not include any projections or considerations of the economic impact to the area if the amenity that the golf course represents to this community were to close and no longer be available for public use.

Renovating the 18-hole Golf Course Is Most Viable Option

	Close Landfill	9-Hole	18-Hole
Total Input Capital	-\$150,000	-\$3,732,237	-\$5,694,109
Accumulated Annual Return/Expense	-\$2,900,000	\$7,375,186	\$11,849,510
Total Return	-\$3,050,000	\$3,642,949	\$6,115,401
IRR	negative	1.16%	1.64%
Net Present Value	-\$1,777,280	\$199,625	\$606,513

9 CONCLUSION AND NEXT STEPS – PHASE III

It is the unanimous conclusion of the consultants that are a party to this report that action should be taken to remediate the problems at the Harry L. Jones Golf Course. In the current state, the impact of landfill settlement have rendered the golf course difficult to maintain to any reasonable standards. Secondary impacts caused by settlement affect drainage and irrigation of the golf course, which are further accelerating the settling of the landfill. Ponding water and other issues threaten the compliance with the closed landfill permit, and some areas of the property with direct access and exposure to the golfers present significant safety risk issues. If nothing is done, it is only a matter of time before an incident occurs that could result in serious injury to a user of the facility.

The study of potential corrective action for the Harry L. Jones Golf Course was originally intended as a five-phase process. This report concludes Phase II of that process, and at this point the project is yielding the desired objective, which was a refined, well-informed decision path for next steps.

Of the three potential options, the studies have indicated that the best course of action is to renovate the entire golf course. This not only is the best decision from the financial perspective of this specific property, there are intrinsic, passive benefits to the neighboring community as well. Allowing the property to revert to a static landfill will have a profound effect on the region surrounding the golf course. On the other hand, investing in a revitalization that promises to turn the current asset, which has a distinctly negative stigma, into a popular, well-perceived amenity to the area has immeasurable benefits.

It is the recommendation of this Phase II report that the governing bodies move to implement Phase III of the process, which is to develop working documents including Construction Drawings, Specifications and permitting for the renovation of the entire golf course. This phase would include finalizing the engineering, design, and procurement process to select a contractor or contractors to complete the renovation. The estimated timeline for Phase II would be approximately 9 months.

Phase IV, which would include actual construction, field engineering and construction administration, is expected to take approximately 24 months for completion.

The final step, Phase V, would entail post-construction maintenance and monitoring. In this phase, a Maintenance and Monitoring Plan would be developed. This Plan will establish inspection guidelines and procedures to ensure early detection and repair of problems caused by landfill settling. Phase V activities would be implemented throughout the life of the facility. Initially, it is anticipated that minimal output would be required to implement Phase V. However, long-term maintenance activities and repairs due to landfill settling are hard to predict at this time.

Appendix A

Work Plan Subsurface Investigation

SCS ENGINEERS

Work Plan Subsurface Investigation Harry L. Jones, Sr. Golf Course

Presented to:

Ratcliffe Golf Services, Inc.

800 Radio Road Charlotte, NC 28216

Presented by:

SCS ENGINEERS, PC 2520 Whitehall Park Road, Suite 450 Charlotte NC, 28273

> October 25, 2017 File No. 02217302.01

Offices Nationwide www.scsengineers.com

SCS ENGINEERS, PC

October 25, 2017 File No. 02217302.01

Mr. David Wolfe, P.E., ENV SP Program Manager Environmental Services Engineering & Property Management Charlotte, NC

Mr. Joseph S. Hack, QEP Solid Waste Management Mecklenburg County 2145 Suttle Avenue Charlotte, NC 28208

Subject: Work Plan for Subsurface Investigation Harry L. Jones, Sr. Golf Course

Dear Mr. Wolfe and Mr. Hack:

On behalf of Ratcliffe Golf Services, SCS Engineers present this Work Plan for the planned subsurface investigation at the Harry L. Jones, Sr. Golf Course. Our subsurface investigation includes borings and test pits to help define the depth and location of buried municipal solid waste at the course.

If you have any questions or require any additional information, please contact me at 704-504-3107 or at <u>slamb@scsengineers.com</u>.

Sincerely,

Stend hat

Steven C. Lamb, PE Vice President SCS ENGINEERS, PC

scl/rhi

Robert H. Isenlarg

Robert H. Isenberg, PE, CPG Senior Vice President SCS ENGINEERS, PC

cc: Del Ratcliffe, Harry L. Jones, Sr. Golf Course Larry Frost, NCDEQ

Enclosures

Work Plan Subsurface Investigation Harry L. Jones, Sr. Golf Course

Presented To:

Ratcliffe Golf Services, Inc. 800 Radio Road Charlotte, NC 28216

Presented From:

SCS ENGINEERS, PC 2520 Whitehall Park Drive, Suite 450 Charlotte, NC 28273

> October 25, 2017 File No. 02217302.00

i

Table of Contents

Section

1.0	INTRODUCTION AND BACKGROUND	. 1
2.0	SITE CONDITIONS	. 1
3.0	DRILLING AND TEST PIT PROGRAM	. 1
4.0	HEALTH AND SAFETY	. 2
5.0	PERMITTING	. 3

Figures

No.

1 Boring Location Plan

Page

SCS ENGINEERS

1.0 INTRODUCTION AND BACKGROUND

The Harry L. Jones, Sr. Golf Course (formerly known as the Renaissance Park Golf Course) is located at 1525 West Tyvola Road in Charlotte North Carolina. The course is owned by the City of Charlotte (City) and managed by the Mecklenburg County Parks and Recreation Department (MCPR). Prior to redevelopment of the property as a golf course, the site was a municipal solid waste disposal facility known as the York Road Landfill.

Ratcliffe Golf Services, Inc. retained SCS Engineers to conduct an assessment of the course in support of a potential significant course renovation project. The assessment focused on the impact that existing landfill disposal areas would have on a renovation project. Phase 1 engineering assignments, which addressed overall conditions of the golf course, were completed earlier this year. Upcoming Phase 2 assignments include obtaining additional site-specific information regarding waste depths and waste limits in areas underlying tee boxes, fairways, greens and cart paths, as well as providing preliminary engineering and settlement analyses, and developing conceptual construction cost estimates for various remedial options.

This Work Plan describes the procedures to be followed during the field investigation activities under Phase 2 to establish depth of waste and waste limits at select locations.

2.0 SITE CONDITIONS

Harry L. Jones, Sr. Golf Course is situated on approximately 300 acres. The course is an 18 hole municipal golf course with a driving range and a par 3 learning center. Portions of the golf course are situated over top of the York Road Landfill, a closed municipal solid waste disposal facility.

SCS is coordinating our subsurface investigative work with Ratcliffe and Ron Garl Golf.

3.0 DRILLING AND TEST PIT PROGRAM

SCS will subcontract with a licensed drilling contractor to drill between 15 and 20 boreholes in pre-selected locations at the course. The boring locations were selected by Ratcliffe Golf, Ron Garl Golf and SCS Engineers and illustrated on **Figure 1**.

SCS Engineers personnel will field locate and stake all boring locations. A truck mounted rotary drill rig (or similar) will be used to auger and sample boreholes to the various depths as indicated below:

- Where waste is encountered, boring will extend 2 to 3 feet below the bottom of waste, into native soil.
- If no waste is encountered, borings will be up to 20 feet deep maximum.
- Per ASTM D1586, Standard penetration test (SPT) sampling and blow counts (N-values) will be performed at 5 to 10 foot depth intervals for select borings. Samples will be

inspected for moisture content, degree of decomposition and composition, both useful for evaluating future settlement. If hard or large obstructions are encountered, the sampling frequency or depth ranges may be amended.

Borings will be logged by the driller for types of materials encountered, depth of liquids, and other conditions, under observations of a representative of SCS Engineers. Soil drill cuttings may be disposed on site, but waste drill cuttings will need to be drummed separately, tested for presence of hazardous materials, and properly disposed of at the Republic Services Charlotte Motor Speedway Landfill in Concord. Records of testing and disposal will be maintained by SCS and provided to the City and County upon request.

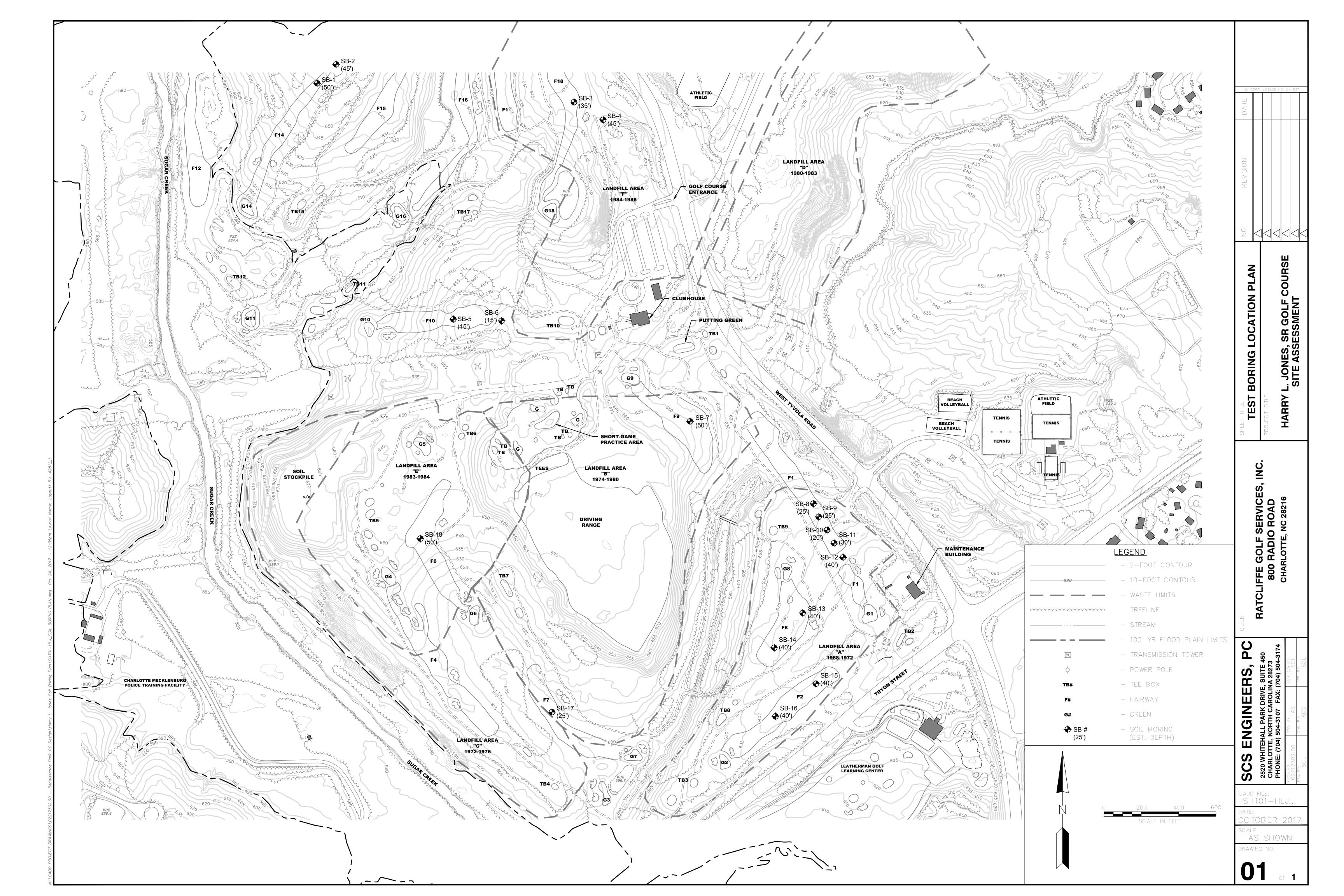
All borings will be backfilled with a heavy bentonite slurry, or with bentonite pellets, up to 2 feet below ground surface. The final 2 feet of the borehole will be backfilled with clean, inorganic soil and the final surface of all disturbed area will be seeded or sodded by Ratcliffe Golf, as necessary to support vegetative growth.

Following the drilling program, or during, it is proposed to excavate test pits (and/or Geoprobe boreholes) at select locations to delineate the edge of waste, or waste boundary. Test pits will be excavated with a backhoe, excavator, or similar equipment that can reach depths of up to 6 to 8 feet. Test pits will be monitored and logged by SCS. All material excavated will be placed back into the test pit and compacted with the backhoe bucket. Just as for the borings, the final 2 feet will be backfilled with clean soil, compacted, and the surface restored.

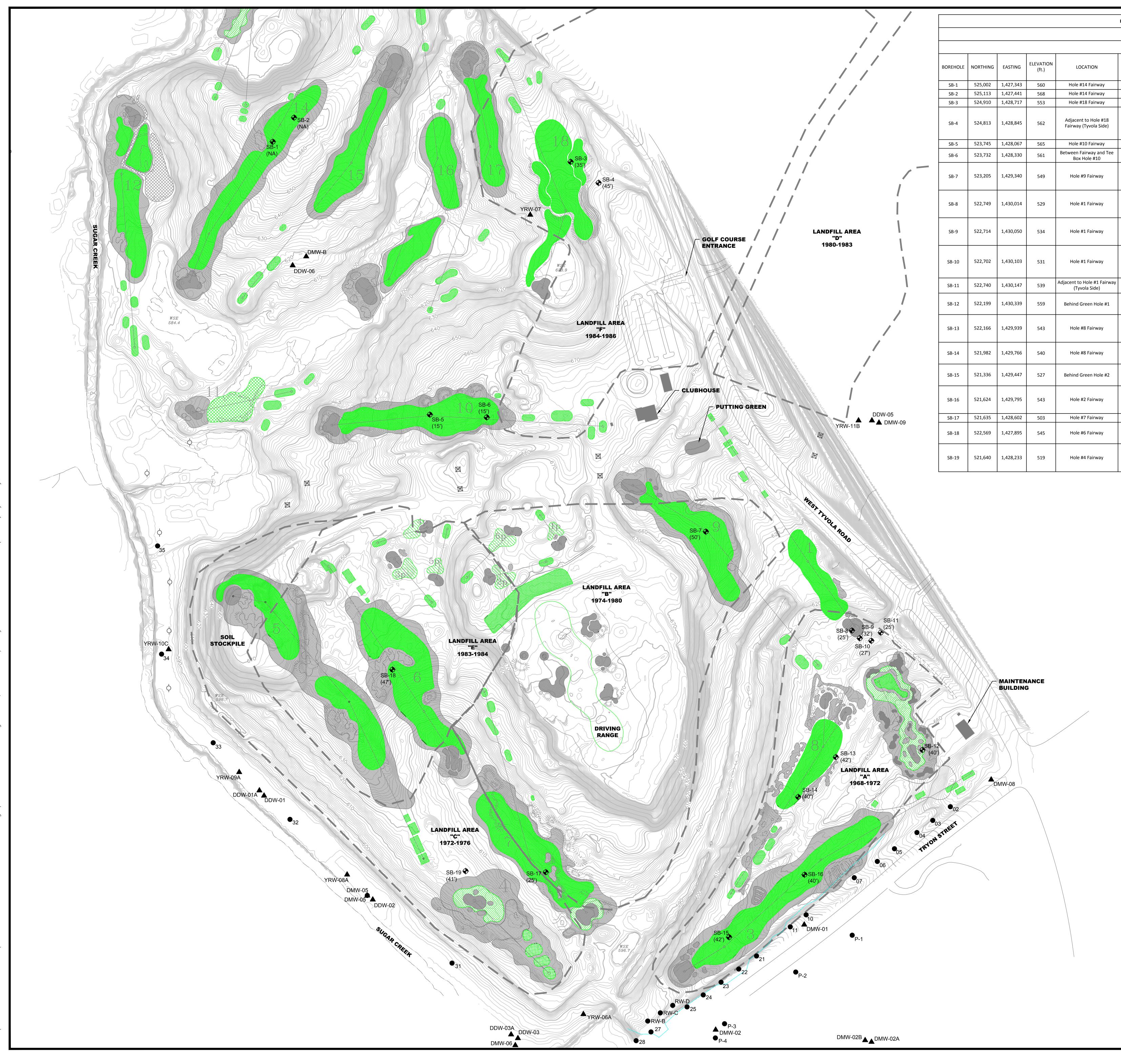
All borings and test pit locations will be field surveyed for horizontal location (N/S and E/W coordinates) and mean sea level elevation. A final report will be prepared by SCS Engineers, following the completion of the field work. The final report will include a narrative of activities, summary of findings, boring and test pits logs, survey data, site plan, lab data and photographs.

4.0 HEALTH AND SAFETY

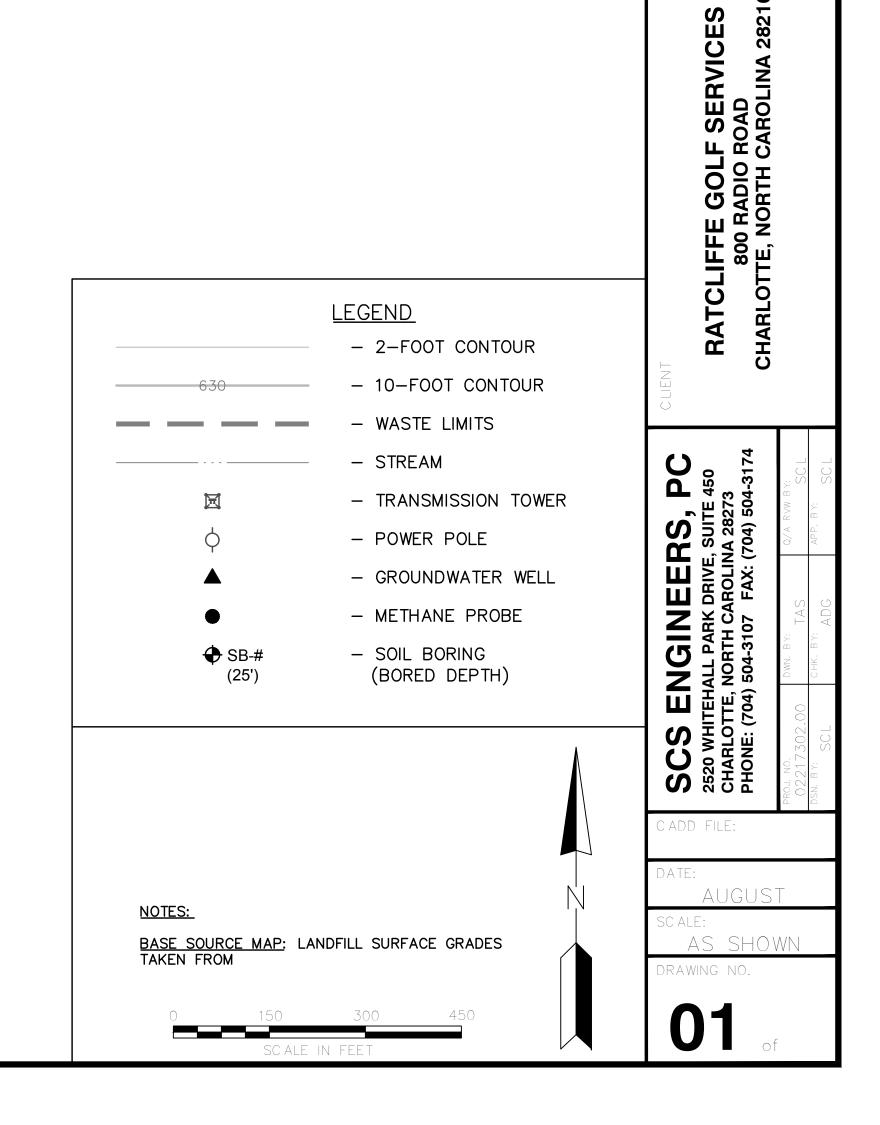
Drilling and test pitting work will occur within or in close proximity to municipal solid waste and within a zone of potential health and safety issues including methane and H2S gas emissions, leachate, organic and metallic waste and other disposed materials.


The Driller is responsible for site health and safety for its own employees and shall prepare a Site Health and Safety Plan, and provide a copy of this Plan to SCS Engineers for informational purposes only. The Site Health and Safety Plan shall be prepared in accordance with applicable provisions of OSHA regulations 29 CFR 1910.120 and 1926.

Prior to any drilling or test pit excavation, a tailgate safety meeting will be conducted at the course. Personal protective equipment (PPE) shall include hard hat, hearing protection, and safety boots. SCS will also have a gas meter to monitor atmosphere in the working zone.


5.0 PERMITTING

SCS Engineers reviewed of the City of Charlotte Erosion Control Requirements. The amount of land to be disturbed is less than one acre, therefore an erosion and sedimentation plan is not required. However, all efforts will be used to limit erosion during the subsurface exploration activities. In general, all boreholes and test pits will be backfilled immediately following their development. All disturbed areas will be re-seeded as needed.


SCS Engineers contacted Mr. Larry Frost, NCDEQ, Waste Management Solid Waste Section Permitting Branch and inquired about any permits or notifications that are required prior to drilling. Mr. Frost stated a permit from NCDEQ is not needed, however, they would like to review this Work Plan. A copy of this Work Plan was submitted to NCDEQ.

Soil Boring Results and Site Plan

	HARRY L. JOI	NES GOLF COU	JRSE				
		RING RESULTS					
		R 4th - 6th, 202					
	TOTAL BORING DEPTH	DEPTH OF SOIL CAP (ft.)	DEPTH TO BOTTOM OF WASTE	WASTE DESCRIPTION (MOISTURE, ODOR, TEXTURE)			
	(ft.) NA	NA	(ft.) NA				
	NA	NA	NA				
	35	35	NA				
	45	6	42	6'-22': mostly plastic netting, paper, wood debris, rubber, indiscernibles 22'-30': greyish indiscernible material, paper, plastics, rubber 30'-42': greyish indiscernible material, plastics, fabric 42'-45': little moist, greyish soil (NO WASTE) (Smelled like active face)			
	15	15	NA				
	15	15	NA				
	50	5	50	5'-16': soil, plastics, rubber, wire, greyish indiscernibles 16'-21': moist soil, plastics, greyish indiscernibles 21'-50': wet "soupy" greyish/brown indiscernibles, plastics (NEVER OUT OF WASTE)			
	25	5	24	5'-8': greyish soil, plastics, fabric 8'-20': moist fabric, plastics, rubber hose 20'-24': wet greyish soil/indiscernibles, few plastics 24'-25': wet greyish soil (NO WASTE)			
	32	2	32	2'-15': wet grey soil, roots, some waste 15'-16': refusal at 16'; wet msw (roofing mat) 16'-32': wet msw, soil (NEVER OUT OF WASTE)			
	27	5	27	5': msw 10'-13': wet soil 13'-18': moist black msw 22'-27': wet msw mixed with soil (NEVER OUT OF WASTE)			
y	25	25	NA		DATE		
	40	10	40	10'-30': moist soil, indiscernibles, mostly fabric 30'-40': wet soil, indiscernibles, fabric (NEVER OUT OF WASTE)			
	42	6	42	6'-12': few wood, plastics, greyish/brown indiscernibles 12'-27': wet "soupy" indiscernible material, plastics 27'-42': moist/"pasty" grey indiscernible material, plasitics, wire (NEVER OUT OF WASTE)			
	40	2	32	2'-16': greyish/black indiscernible material, plastics, wood material 16'-32': greyish/black "soupy" material, few plastics 32'-40': soil, moist to wet (NO WASTE)			
	42	10	42	10'-12': soil, plastics, indiscernibles 12'-42': wet "soupy" brownish soil/indiscernible material, plastics, fabric (NEVER OUT OF WASTE)	REVISION		
	40	4	23	4'-13': plastics, few wood chips, mostly greyish soil/indiscernible material 13'-23': few plastics, mostly soil & indiscernible material 23'-40': soil, around 35' soil little moist, (NO WASTE)	REV		
	25	25	NA				
	47	5	47	5'-8': soil, plastics, cable, indiscernibles 8'-47': wet "soupy" greyishindiscernible material, plastics, fabric, wire (NEVER OUT OF WASTE)			
	41	2	39	2'-15': soil, greyish indiscernibles, plastics, fabric, rubber 15'-39': wet greyish "soupy" indiscernible material, few plastics 39'-41': wet "soupy" material (refusal) (Faint msw/lfg smell)			

	HARRY L. JONES GOLF COURSE TEST BORING RESULTS DECEMBER 4 th - 6 th , 2017									
BOREHOLE	NORTHING	EASTING	ELEVATION (ft.)	LOCATION	TOTAL BORING DEPTH (ft.)	DEPTH OF SOIL CAP (ft.)	DEPTH TO BOTTOM OF WASTE (ft.)	WA (MOIST		
SB-1	525,002	1,427,343	560	Hole #14 Fairway	NA	NA	NA			
SB-2	525,113	1,427,441	568	Hole #14 Fairway	NA	NA	NA			
SB-3	524,910	1,428,717	553	Hole #18 Fairway	35	35	NA			
SB-4	524,813	1,428,845	562	Adjacent to Hole #18 Fairway (Tyvola Side)	45	6	42	6'-22': mostly plastic netting, pape 22'-30': greyish indiscernible mate 30'-42': greyish indiscernible mate 42'-45': little moist, greyish soil (N (Smelled like active face)		
SB-5	523,745	1,428,067	565	Hole #10 Fairway	15	15	NA			
SB-6	523,732	1,428,330	561	Between Fairway and Tee Box Hole #10	15	15	NA			
SB-7	523,205	1,429,340	549	Hole #9 Fairway	50	5	50	5'-16': soil, plastics, rubber, wire, 16'-21': moist soil, plastics, greyis 21'-50': wet "soupy" greyish/brov (NEVER OUT OF WASTE)		
SB-8	522,749	1,430,014	529	Hole #1 Fairway	25	5	24	 5'-8': greyish soil, plastics, fabric 8'-20': moist fabric, plastics, rubbe 20'-24': wet greyish soil/indiscern 24'-25': wet greyish soil (NO WAS) 		
SB-9	522,714	1,430,050	534	Hole #1 Fairway	32	2	32	2'-15': wet grey soil, roots, some v 15'-16': refusal at 16'; wet msw (r 16'-32': wet msw, soil (NEVER OUT OF WASTE)		
SB-10	522,702	1,430,103	531	Hole #1 Fairway	27	5	27	 5': msw 10'-13': wet soil 13'-18': moist black msw 22'-27': wet msw mixed with soil (NEVER OUT OF WASTE) 		
SB-11	522,740	1,430,147	539	Adjacent to Hole #1 Fairway (Tyvola Side)	25	25	NA			
SB-12	522,199	1,430,339	559	Behind Green Hole #1	40	10	40	10'-30': moist soil, indiscernibles, 30'-40': wet soil, indiscernibles, fa (NEVER OUT OF WASTE)		

VASTE DESCRIPTION
STURE, ODOR, TEXTURE)
aper, wood debris, rubber, indiscernibles
aterial, paper, plastics, rubber
aterial, plastics, fabric
(NO WASTE)
e, greyish indiscernibles
yish indiscernibles
own indiscernibles, plastics
с
ober hose
ernibles, few plastics
ASTE)
ne waste
(roofing mat)
bil
es, mostly fabric
, fabric

					HARRY L. JONE	S GOLF COL	JRSE	
						NG RESULTS 4 th - 6 th , 2017		
BOREHOLE	NORTHING	EASTING	ELEVATION (ft.)	LOCATION	TOTAL BORING DEPTH (ft.)	DEPTH OF SOIL CAP (ft.)	DEPTH TO BOTTOM OF WASTE (ft.)	WA (MOIST
SB-13	522,166	1,429,939	543	Hole #8 Fairway	42	6	42	6'-12': few wood, plastics, greyish 12'-27': wet "soupy" indiscernible 27'-42': moist/"pasty" grey indisc (NEVER OUT OF WASTE)
SB-14	521,982	1,429,766	540	Hole #8 Fairway	40	2	32	 2'-16': greyish/black indiscernible 16'-32': greyish/black "soupy" ma 32'-40': soil, moist to wet (NO W
SB-15	521,336	1,429,447	527	Behind Green Hole #2	42	10	42	10'-12': soil, plastics, indiscernible 12'-42': wet "soupy" brownish so (NEVER OUT OF WASTE)
SB-16	521,624	1,429,795	543	Hole #2 Fairway	40	4	23	 4'-13': plastics, few wood chips, n 13'-23': few plastics, mostly soil & 23'-40': soil, around 35' soil little
SB-17	521,635	1,428,602	503	Hole #7 Fairway	25	25	NA	
SB-18	522,569	1,427,895	545	Hole #6 Fairway	47	5	47	5'-8': soil, plastics, cable, indiscer 8'-47': wet "soupy" greyishindisce (NEVER OUT OF WASTE)
SB-19	521,640	1,428,233	519	Hole #4 Fairway	41	2	39	2'-15': soil, greyish indiscernibles, 15'-39': wet greyish "soupy" indis 39'-41': wet "soupy" material (ref (Faint msw/lfg smell)

ASTE DE	SCRIP	ΓΙΟΝ
STURE, O	DOR, T	EXTURE)

ish/brown indiscernibles ble material, plastics iscernible material, plasitics, wire

ble material, plastics, wood material material, few plastics WASTE)

oles

soil/indiscernible material, plastics, fabric

s, mostly greyish soil/indiscernible material il & indiscernible material le moist, (NO WASTE)

ernibles scernible material, plastics, fabric, wire

es, plastics, fabric, rubber discernible material, few plastics refusal) Waste Cutting Disposal and Lab Results

Report of Analysis

SCS Engineers

2520 Whitehall Park Drive #450 Charlotte, NC 28273 Attention: Steve Lamb

Project Name: Ratcliff E. Golf, REN. PARK GC DESIGN Project Number: 02217302.00 Lot Number:**TB08087** Date Completed:02/20/2018

N. Saikaly

02/28/2018 12:16 PM Approved and released by: Project Manager: Nisreen Saikaly

The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010001 NELAC No: E87653 NC DENR No: 329 NC Field Parameters No: 5639

Case Narrative SCS Engineers Lot Number: TB08087

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" qualifier

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary SCS Engineers

Lot Number: TB08087

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	HJGC	Solid	02/08/2018 1049	02/08/2018

(1 sample)

SHEALY ENVIRONMENTAL SERVICES, INC.

Detection Summary SCS Engineers

	Lot Number: TB08087		
Matrix	Parameter	Method	

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	HJGC	Solid	SGT - HEM (non-polar	9071B	1100		mg/kg	5
001	HJGC	Solid	Aroclor 1242	8082A	1.3		mg/Kg	8
001	HJGC	Solid	Aroclor 1254	8082A	0.34		mg/Kg	8
001	HJGC	Solid	Arsenic	6010D	0.027	J	mg/L	11
001	HJGC	Solid	Barium	6010D	0.94		mg/L	11
001	HJGC	Solid	Chromium	6010D	0.036	J	mg/L	11
001	HJGC	Solid	Lead	6010D	0.15		mg/L	11

(7 detections)

Inorganic non-metals

Client: SCS Engine	eers					Laboratory ID: TB08087-001					
Description: HJGC						Matrix	x: Solid				
Date Sampled:02/08/2018	1049			% Solids: 65.6 02/14/2018 2116							
Date Received: 02/08/2018											
Run Prep Method	Analytical Method	Dilution	Anal	ysis Date Analyst	Prep Date	Batch					
1	(SGT - HEM (n) 9071B	1	02/19	/2018 0000 NFB		64817					
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run		
SGT - HEM (non-polar ma	aterial)			9071B	1100	290	150	mg/kg	1		

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitU = Not detected at or above the DLN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and \geq DLH = Out of holding timeW = Reported on wet weight basisH = Out of holding timeH = Out of holding timeH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

TCLP Volatiles

Client: SCS Engineers

Description: HJGC

Date Sampled:02/08/2018 1049

Date Received: 02/08/2018

Laboratory ID: **TB08087-001** Matrix: **Solid**

% Solids: 65.6 02/14/2018 2116

Run Prep Method 1 1311/5030B	Analytical Method 8260B	Dilution 10	Analysis 02/13/2018	Date Analys 3 1406 JJG	t Prep	Date	Batch 64344	Leachate Date 02/11/2018 1930		
Parameter		C Num		nalytical Method	Result	Q	LOQ	DL	Units	Run
Benzene		71-4	3-2	8260B	0.0040	U	0.050	0.0040	mg/L	1
2-Butanone (MEK)		78-9	3-3	8260B	0.020	U	0.10	0.020	mg/L	1
Carbon tetrachloride		56-2	3-5	8260B	0.0040	U	0.050	0.0040	mg/L	1
Chlorobenzene		108-9	0-7	8260B	0.0040	U	0.050	0.0040	mg/L	1
Chloroform		67-6	6-3	8260B	0.0040	U	0.050	0.0040	mg/L	1
1,2-Dichloroethane		107-0	6-2	8260B	0.0040	U	0.050	0.0040	mg/L	1
1,1-Dichloroethene		75-3	5-4	8260B	0.0040	U	0.050	0.0040	mg/L	1
Tetrachloroethene		127-1	8-4	8260B	0.0040	U	0.050	0.0040	mg/L	1
Trichloroethene		79-0	1-6	8260B	0.0040	U	0.050	0.0040	mg/L	1
Vinyl chloride		75-0	1-4	8260B	0.0040	U	0.010	0.0040	mg/L	1
Surrogate		Run 1 A Recovery	cceptance Limits	9						
1,2-Dichloroethane-d4		100	70-130							
Bromofluorobenzene		101	70-130							
Toluene-d8		106	70-130							

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit

 U = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>

 H = Out of holding time
 W = Reported on wet weight basis
 W = Reported on wet weight basis
 H = Out of holding time
 H = Out of holding time

Shealy Environmental Services, Inc.

TCLP Semivolatiles

Client: SCS Engineers

Description: HJGC

Date Sampled:02/08/2018 1049

Laboratory ID: **TB08087-001** Matrix: **Solid**

% Solids: 65.6 02/14/2018 2116

Date Received: 02/08/2018

Run Prep Method 1 1311/3520C	Analytical Method 8270D	Dilution 1		s Date Analyst 18 1344 CMP2	•		Batch 1738 64269	Leachate Date 02/11/2018 1930		
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
1,4-Dichlorobenzene		106-	46-7	8270D	0.0050	U	0.040	0.0050	mg/L	1
2,4-Dinitrotoluene		121-	14-2	8270D	0.0050	U	0.080	0.0050	mg/L	1
Hexachlorobenzene		118-	74-1	8270D	0.0050	U	0.040	0.0050	mg/L	1
Hexachlorobutadiene		87-	68-3	8270D	0.0050	U	0.040	0.0050	mg/L	1
Hexachloroethane		67-	72-1	8270D	0.010	U	0.040	0.010	mg/L	1
2-Methylphenol		95-	48-7	8270D	0.010	U	0.040	0.010	mg/L	1
3+4-Methylphenol		106-	44-5	8270D	0.015	U	0.040	0.015	mg/L	1
Nitrobenzene		98-	95-3	8270D	0.015	U	0.040	0.015	mg/L	1
Pentachlorophenol		87-	86-5	8270D	0.020	U	0.20	0.020	mg/L	1
Pyridine		110-	86-1	8270D	0.0050	U	0.040	0.0050	mg/L	1
2,4,5-Trichlorophenol		95-	95-4	8270D	0.0050	U	0.040	0.0050	mg/L	1
2,4,6-Trichlorophenol		88-	06-2	8270D	0.0050	U	0.040	0.0050	mg/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits	ce						
2-Fluorobiphenyl		82	37-129							
2-Fluorophenol		67	24-127							
Nitrobenzene-d5		106	38-127							
Phenol-d5		77	28-128							
Terphenyl-d14		102	10-148							
2,4,6-Tribromophenol		102	41-144							

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit

 U = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>

 H = Out of holding time
 W = Reported on wet weight basis
 H = Out of holding time
 H = Out of holding time
 H = Out of holding time

Shealy Environmental Services, Inc.

PCBs by GC

Client: SCS Engineers

Description: HJGC

Date Sampled:02/08/2018 1049

Laboratory ID: **TB08087-001** Matrix: **Solid** % Solids: **65.6 02/14/2018 2116**

Units

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Run

1

1

1

1

1

1

1

Date Received: 02/08/2018

Run Prep Method 1 3550C	 tical Method 8082A	Dilution 10		sis Date Analyst 2018 1033 CHG	Prep 02/14/2	Date 2018 1648	Batch 64516	
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL
Aroclor 1016		12674-1	11-2	8082A	0.06	U	0.26	0.06
Aroclor 1221		11104-2	28-2	8082A	0.06	U	0.26	0.06
Aroclor 1232		11141-	16-5	8082A	0.06	U	0.26	0.06
Aroclor 1242		53469-2	21-9	8082A	1.3		0.26	0.06
Aroclor 1248		12672-2	29-6	8082A	0.06	U	0.26	0.06
Aroclor 1254		11097-0	69-1	8082A	0.34		0.26	0.06
Aroclor 1260		11096-8	82-5	8082A	0.06	U	0.26	0.06

Surrogate	Q	% Recovery	Limits
Decachlorobiphenyl		102	41-132
Tetrachloro-m-xylene		78	35-106

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitU = Not detected at or above the DLN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and \geq DLH = Out of holding timeW = Reported on wet weight basisFerror and the calibration of compound exceeded the calibration rangeJ = Estimated result < LOQ and \geq DL

Shealy Environmental Services, Inc.

TCLP Herbicides

Client: SCS Engineers					Laboratory	ID: TB08087-	001	
Description: HJGC					Ma	trix: Solid		
Date Sampled:02/08/2018 1049					% Sol	ids: 65.6 02/	14/2018 2116	
Date Received: 02/08/2018								
Run Prep Method 1 1311/8151A	Analytical Method 8151A		/sis Date Analys /2018 1447 DAL1		ate Batch 8 1941 64366	Leachate D 02/11/2018		
Parameter		CAS Number	Analytical Method	Result C	LOQ	DL	Units	Run
2,4-D		94-75-7	8151A	0.0050 U	0.020	0.0050	mg/L	1
2,4,5-TP (Silvex)		93-72-1	8151A	0.0013 U	0.0050	0.0013	mg/L	1
Surrogate		Run 1 Accept Recovery Lim						
DCAA		83 62-1	17					

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit

 U = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>

 H = Out of holding time
 W = Reported on wet weight basis
 H = Out of holding time
 H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

TCLP Pesticides

Client: SCS Engineers

Description: HJGC

Date Sampled:02/08/2018 1049

Laboratory ID: **TB08087-001** Matrix: **Solid** % Solids: **65.6 02/14/2018 2116**

Date Received: 02/08/2018

Run Prep Method 1 1311/3520C	Analytical Method 8081B	Dilution 1		s Date Analys 18 1730 PMS	•		e Batch 1738 64285	Leachate Date 02/11/2018 1930)	
Parameter		(Num	CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
gamma-BHC (Lindane)		58-8	39-9	8081B	0.00017	U	0.00040	0.00017	mg/L	1
Chlordane		57-7	74-9	8081B	0.0015	U	0.0040	0.0015	mg/L	1
Endrin		72-2	20-8	8081B	0.00015	U	0.00040	0.00015	mg/L	1
Heptachlor		76-4	44-8	8081B	0.00015	U	0.00040	0.00015	mg/L	1
Heptachlor epoxide		1024-8	57-3	8081B	0.00016	U	0.00040	0.00016	mg/L	1
Methoxychlor		72-4	43-5	8081B	0.00021	U	0.0016	0.00021	mg/L	1
Toxaphene		8001-3	35-2	8081B	0.0030	U	0.0080	0.0030	mg/L	1
Surrogate		Run 1 Recovery	Acceptan Limits							
Decachlorobiphenyl		89	20-131							
Tetrachloro-m-xylene		76	26-132	2						

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit

 U = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>

 H = Out of holding time
 W = Reported on wet weight basis
 W = Reported on wet weight basis
 H = Out of holding time

Shealy Environmental Services, Inc.

TCLP Metals

 Client: SCS Engineers
 Laboratory ID: TB08087-001

 Description: HJGC
 Matrix: Solid

 Date Sampled: 02/08/2018 1049
 % Solids: 65.6
 02/14/2018 2116

 Date Received: 02/08/2018
 %
 Solids: 65.6
 02/14/2018 2116

Run Prep Method Analytica 1 1311/3010A 1311/7470A		Analytical Method 6010D 7470A	Dilution 1 1	02/15/	ysis Date Analyst /2018 1310 CJZ /2018 2034 SLS	02/13/2	2018	e Batch 1737 64381 1512 64353	Leachate D 02/11/2018 02/11/2018	1930	
Para	imeter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Arse	nic		7440-	38-2	6010D	0.027	J	0.15	0.025	mg/L	1
Bariu	um		7440-	39-3	6010D	0.94		0.25	0.031	mg/L	1
Cadr	nium		7440-	43-9	6010D	0.0060	U	0.050	0.0060	mg/L	1
Chro	omium		7440-	47-3	6010D	0.036	J	0.10	0.013	mg/L	1
Lead	I		7439-	92-1	6010D	0.15		0.10	0.047	mg/L	1

7470A

6010D

6010D

0.00091

0.085

0.021

U

U

U

0.0020

0.20

0.10

0.00091

0.085

0.021

mg/L

mg/L

mg/L

1

1

1

7439-97-6

7782-49-2

7440-22-4

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit

 U = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>

 H = Out of holding time
 W = Reported on wet weight basis
 V
 V

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Mercury

Selenium

Silver

QC Summary

Inorganic non-metals - MB											
Sample ID: TQ64817-001 Batch: 64817				Matrix: Solid							
Analytical Method: 9071B											
Parameter	Popult	0		100	וח	Unite	Analysis Data				

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
SGT - HEM (non-polar material)	100	U	1	200	100	mg/kg	02/19/2018 0000

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 U = Not detected at or above the detection limit

 Note: Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: TQ64817-002				Matrix: Solid						
Batch: 64817										
Analytical Method: 9071B										
	Spike					0/ D aa				
Parameter	Amount (mg/kg)	Result (mg/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
SGT - HEM (non-polar material)	1000	820		1	82	70-130	02/19/2018 0000			

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 U = Not detected at or above the detection limit
 + = RPD is out of criteria

 Note: Calculations are performed before rounding to avoid round-off errors in calculated results
 Shealy Environmental Services, Inc.

Inorganic non-metals - Duplicate

Sample ID: TB08087-001DU				Matrix: Solid					
Batch: 64817									
Analytical Method: 9071B									
Parameter	Sample Amount (mg/kg)	Result (mg/kg)	Q	Dil	% RPD	% RPD Limit	Analysis Date		
SGT - HEM (non-polar material)	1100	1100	+	1	39	20	02/19/2018 0000		

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 U = Not detected at or above the detection limit

 Note: Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.

Inorganic non-metals - MS

Matrix: Solid

Sample ID: TB08087-001MS Batch: 64817 Analytical Method: 9071B

Parameter	Sample Amount (mg/kg)	Spike Amount (mg/kg)	Result (mg/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
SGT - HEM (non-polar material)	1100	1500	3000	Ν	1	153	70-130	02/19/2018 0000

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 U = Not detected at or above the detection limit
 + = RPD is out of criteria

 Note:
 Calculations are performed before rounding to avoid round-off errors in calculated results
 Shealy Environmental Services, Inc.

TCLP Volatiles - MB

Sample ID: TQ64344-001 Batch: 64344 Analytical Method: 8260B Matrix: Solid

Prep Method: 1311/5030B

Leachate Date: 02/11/2018 1930

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Benzene	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
2-Butanone (MEK)	0.020	U	10	0.10	0.020	mg/L	02/13/2018 1256
Carbon tetrachloride	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
Chlorobenzene	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
Chloroform	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
1,2-Dichloroethane	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
1,1-Dichloroethene	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
Tetrachloroethene	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
Trichloroethene	0.0040	U	10	0.050	0.0040	mg/L	02/13/2018 1256
Vinyl chloride	0.0040	U	10	0.010	0.0040	mg/L	02/13/2018 1256
Surrogate	Q % Rec	:	Acceptance Limit				
1,2-Dichloroethane-d4	111		70-130				
Bromofluorobenzene	108		70-130				
Toluene-d8	111		70-130				

TCLP Volatiles - LCS

Sample ID: TQ64344-00 Batch: 64344	02	Matrix: Solid Prep Method: 1311/5030B										
Analytical Method: 8260B		Leachate Da										
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date					
Benzene	0.50	0.54		10	108	70-130	02/13/2018 1233					
2-Butanone (MEK)	1.0	1.0		10	105	70-130	02/13/2018 1233					
Carbon tetrachloride	0.50	0.58		10	117	70-130	02/13/2018 1233					
Chlorobenzene	0.50	0.53		10	106	70-130	02/13/2018 1233					
Chloroform	0.50	0.57		10	113	70-130	02/13/2018 1233					
1,2-Dichloroethane	0.50	0.57		10	114	70-130	02/13/2018 1233					
1,1-Dichloroethene	0.50	0.56		10	112	70-130	02/13/2018 1233					
Tetrachloroethene	0.50	0.53		10	107	70-130	02/13/2018 1233					
Trichloroethene	0.50	0.54		10	109	70-130	02/13/2018 1233					
Vinyl chloride	0.50	0.56		10	113	70-130	02/13/2018 1233					
Surrogate	Q% Rec	Acceptanc Limit	e									
1,2-Dichloroethane-d4	96	70-130										
Bromofluorobenzene	99	70-130										
Toluene-d8	101	70-130										

TCLP Volatiles - MS

Sample ID: TB08087-001MS Batch: 64344

LOQ = Limit of Quantitation

DL = Detection Limit

LOD = Limit of Detection

Matrix: Solid

Prep Method: 1311/5030B

Analytical Method: 8260B						Le	achate Date:	02/11/2018 1930
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	0.0	0.50	0.59		10	117	70-130	02/13/2018 1429
2-Butanone (MEK)	0.0	1.0	1.0		10	103	70-130	02/13/2018 1429
Carbon tetrachloride	0.0	0.50	0.64		10	127	70-130	02/13/2018 1429
Chlorobenzene	0.0	0.50	0.56		10	113	70-130	02/13/2018 1429
Chloroform	0.0	0.50	0.60		10	121	70-130	02/13/2018 1429
1,2-Dichloroethane	0.0	0.50	0.58		10	117	70-130	02/13/2018 1429
1,1-Dichloroethene	0.0	0.50	0.61		10	123	70-130	02/13/2018 1429
Tetrachloroethene	0.0	0.50	0.58		10	115	70-130	02/13/2018 1429
Trichloroethene	0.0	0.50	0.59		10	118	70-130	02/13/2018 1429
Vinyl chloride	0.0	0.50	0.63		10	126	70-130	02/13/2018 1429
Surrogate	Q % Re	Ac	ceptance Limit					
1,2-Dichloroethane-d4	99		70-130					
Bromofluorobenzene	103		70-130					
Toluene-d8	106		70-130					

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

P = The RPD between two GC columns exceeds 40%

U = Not detected at or above the detection limit

J = Estimated result < LOQ and \ge DL

N = Recovery is out of criteria + = RPD is out of criteria

TCLP Semivolatiles - MB

Sample ID: TQ64269-001	Matrix: Solid
Batch: 64269	Prep Method: 1311/3520C
Analytical Method: 8270D	Prep Date: 02/12/2018 1738 Leachate Date: 02/11/2018 1930

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
1,4-Dichlorobenzene	0.0050	U	1	0.040	0.0050	mg/L	02/15/2018 1029
2,4-Dinitrotoluene	0.0050	U	1	0.080	0.0050	mg/L	02/15/2018 1029
Hexachlorobenzene	0.0050	U	1	0.040	0.0050	mg/L	02/15/2018 1029
Hexachlorobutadiene	0.0050	U	1	0.040	0.0050	mg/L	02/15/2018 1029
Hexachloroethane	0.010	U	1	0.040	0.010	mg/L	02/15/2018 1029
2-Methylphenol	0.010	U	1	0.040	0.010	mg/L	02/15/2018 1029
3+4-Methylphenol	0.015	U	1	0.040	0.015	mg/L	02/15/2018 1029
Nitrobenzene	0.015	U	1	0.040	0.015	mg/L	02/15/2018 1029
Pentachlorophenol	0.020	U	1	0.20	0.020	mg/L	02/15/2018 1029
Pyridine	0.0050	U	1	0.040	0.0050	mg/L	02/15/2018 1029
2,4,5-Trichlorophenol	0.0050	U	1	0.040	0.0050	mg/L	02/15/2018 1029
2,4,6-Trichlorophenol	0.0050	U	1	0.040	0.0050	mg/L	02/15/2018 1029
Surrogate	Q % Rec	;	Acceptance Limit				
2-Fluorobiphenyl	83		37-129				
2-Fluorophenol	54		24-127				
Nitrobenzene-d5	93		38-127				
Phenol-d5	64		28-128				
Terphenyl-d14	100		10-148				
2,4,6-Tribromophenol	102		41-144				

TCLP Semivolatiles - LCS

Sample ID: TQ64269-002 Batch: 64269				: Solid : 1311/3520C						
Analytical Method: 8270D	Prep Date: 02/12/2018 1738 Leachate Date: 02/11/2018 1930									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q Dil	% Rec	% Rec Limit	Analysis Date				
1,4-Dichlorobenzene	0.40	0.27	1	68	30-130	02/15/2018 1053				
2,4-Dinitrotoluene	0.40	0.36	1	90	30-130	02/15/2018 1053				
Hexachlorobenzene	0.40	0.42	1	105	30-130	02/15/2018 1053				
Hexachlorobutadiene	0.40	0.21	1	53	30-130	02/15/2018 1053				
Hexachloroethane	0.40	0.22	1	56	30-130	02/15/2018 1053				
2-Methylphenol	0.40	0.36	1	90	30-130	02/15/2018 1053				
3+4-Methylphenol	0.80	0.85	1	106	30-130	02/15/2018 1053				
Nitrobenzene	0.40	0.44	1	111	30-130	02/15/2018 1053				
Pentachlorophenol	0.40	0.36	1	90	30-130	02/15/2018 1053				
Pyridine	0.40	0.39	1	97	30-130	02/15/2018 1053				
2,4,5-Trichlorophenol	0.40	0.38	1	95	30-130	02/15/2018 1053				
2,4,6-Trichlorophenol	0.40	0.34	1	86	30-130	02/15/2018 1053				
Surrogate	Q % Rec	Acceptance Limit	9							
2-Fluorobiphenyl	85	37-129								
2-Fluorophenol	68	24-127								
Nitrobenzene-d5	108	38-127								
Phenol-d5	83	28-128								
Terphenyl-d14	99	10-148								
2,4,6-Tribromophenol	100	41-144								

TCLP Pesticides - MB

Sample ID: TQ64285-001	Matrix: Solid
Batch: 64285	Prep Method: 1311/3520C
Analytical Method: 8081B	Prep Date: 02/12/2018 1738 Leachate Date: 02/11/2018 1930

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
gamma-BHC (Lindane)	0.00017	U	1	0.00040	0.00017	mg/L	02/13/2018 1644
Chlordane	0.0015	U	1	0.0040	0.0015	mg/L	02/13/2018 1644
Endrin	0.00015	U	1	0.00040	0.00015	mg/L	02/13/2018 1644
Heptachlor	0.00015	U	1	0.00040	0.00015	mg/L	02/13/2018 1644
Heptachlor epoxide	0.00016	U	1	0.00040	0.00016	mg/L	02/13/2018 1644
Methoxychlor	0.00021	U	1	0.0016	0.00021	mg/L	02/13/2018 1644
Toxaphene	0.0030	U	1	0.0080	0.0030	mg/L	02/13/2018 1644
Surrogate	Q % R		cceptance Limit				
Decachlorobiphenyl	93		20-131				
Tetrachloro-m-xylene	82		26-132				

TCLP Pesticides - LCS

Sample ID: TQ64285-002 Batch: 64285 Analytical Method: 8081B	2		I	Prep Method	: Solid : 1311/3520C :: 02/12/2018 173	8 Leachate Dat	e: 02/11/2018 1930
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
gamma-BHC (Lindane)	0.0080	0.0078		1	98	70-130	02/13/2018 1659
Chlordane	0.0080	0.0098	Р	1	123	70-130	02/13/2018 1659
Endrin	0.0080	0.0074		1	93	70-130	02/13/2018 1659
Heptachlor	0.0080	0.0075		1	94	70-130	02/13/2018 1659
Heptachlor epoxide	0.0080	0.0072		1	90	70-130	02/13/2018 1659
Methoxychlor	0.0080	0.0079		1	99	70-130	02/13/2018 1659
Toxaphene	0.016	0.015		1	94	70-130	02/13/2018 1659
Surrogate	Q % R		ptance imit				
Decachlorobiphenyl	10	1 20)-131				
Tetrachloro-m-xylene	84	26	6-132				

TCLP Pesticides - MS

Sample ID: TB08087-001MS Batch: 64285	i		Pr		ix: Solid od: 1311/3	520C		
Analytical Method: 8081B				Prep Da	ate: 02/12/2	2018 1738 Le	achate Date:	02/11/2018 1930
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
gamma-BHC (Lindane)	0.0	0.0080	0.0078		1	98	70-130	02/13/2018 1746
Chlordane	0.0	0.0080	0.0057	Р	1	71	70-130	02/13/2018 1746
Endrin	0.0	0.0080	0.0072		1	90	70-130	02/13/2018 1746
Heptachlor	0.0	0.0080	0.0072		1	90	70-130	02/13/2018 1746
Heptachlor epoxide	0.0	0.0080	0.0068		1	85	70-130	02/13/2018 1746
Methoxychlor	0.0	0.0080	0.0080		1	100	70-130	02/13/2018 1746
Toxaphene	0.0	0.016	0.013		1	83	70-130	02/13/2018 1746
Surrogate	Q % Re	Ac	cceptance Limit					
Decachlorobiphenyl	96		20-131					
Tetrachloro-m-xylene	76		26-132					

TCLP Herbicides - MB

Sample ID: TQ64366-001			Matrix:	Solid			
Batch: 64366			Prep Method:	1311/8151	۱		
Analytical Method: 8151A			Prep Date:	02/13/2018	1941	Leachate Date:	02/11/2018 1930
Parameter	Posult	0	1.0	о п		Unite	Analysis Data

Farameter	Res	uit		LUQ	DL	Units	Analysis Date
2,4-D	0.00	50	U 1	0.020	0.0050	mg/L	02/14/2018 1526
2,4,5-TP (Silvex)	0.00	13	U 1	0.0050	0.0013	mg/L	02/14/2018 1526
Surrogate	Q	% Rec	Acceptance Limit				
DCAA		80	62-117				

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 U = Not detected at or above the detection limit
 + = RPD is out of criteria

 Note:
 Calculations are performed before rounding to avoid round-off errors in calculated results
 Shealy Environmental Services, Inc.

TCLP Herbicides - LCS

Sample ID: TQ64366-002 Batch: 64366			Р	•	1311/8151A		00/11/2010 1000
Analytical Method: 8151A				Prep Date:	02/13/2018 1941	Leachate Date:	02/11/2018 1930
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
2,4-D	0.20	0.14		1	72	59-139	02/14/2018 1549
2,4,5-TP (Silvex)	0.20	0.17		1	84	56-132	02/14/2018 1549
Surrogate	Q% Rec	Acceptanc Limit	e				
DCAA	89	62-117					

TCLP Herbicides - MS

Sample ID: TB08087-00 Batch: 64366 Analytical Method: 8151A	IMS		Pr	ep Metho	ix: Solid od: 1311/8 ate: 02/13/2		achate Date:	02/11/2018 1930
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
2,4-D	0.0	0.20	0.13		1	63	59-139	02/15/2018 1510
2,4,5-TP (Silvex)	0.0	0.20	0.15		1	74	56-132	02/15/2018 1510
Surrogate	Q% Re		ptance imit					
DCAA	86	62	2-117					

			PCBs by GC	: - MB			
Sample ID: TQ64516-001 Batch: 64516 Analytical Method: 8082A				Matrix: Solid o Method: 35500 Prep Date: 02/14		Cleanup	b: 3660B/3665A
Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Aroclor 1016	0.004	U	1	0.017	0.004	mg/Kg	02/15/2018 0953
Aroclor 1221	0.004	U	1	0.017	0.004	mg/Kg	02/15/2018 0953
Aroclor 1232	0.004	U	1	0.017	0.004	mg/Kg	02/15/2018 0953
Aroclor 1242	0.004	U	1	0.017	0.004	mg/Kg	02/15/2018 0953
Aroclor 1248	0.004	U	1	0.017	0.004	mg/Kg	02/15/2018 0953
Aroclor 1254	0.004	U	1	0.017	0.004	mg/Kg	02/15/2018 0953
Aroclor 1260	0.004	U	1	0.017	0.004	mg/Kg	02/15/2018 0953
Surrogate	Q % R	ec	Acceptance Limit				
Decachlorobiphenyl	54		41-132				
Tetrachloro-m-xylene	51		35-106				

PCBs by GC - LCS

Sample ID: TQ64516-002 Batch: 64516 Analytical Method: 8082A				Р	Matrix: rep Method: Prep Date			ıp: 3660B/3665A
Parameter	Spi Amo (mg		Result (mg/Kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Aroclor 1016	0.08	3	0.071		1	86	70-130	02/15/2018 1006
Aroclor 1260	0.08	3	0.067		1	81	70-130	02/15/2018 1006
Surrogate	Q	% Rec	Accepta Limit					
Decachlorobiphenyl		93	41-13	2				
Tetrachloro-m-xylene		80	35-10	6				

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 U = Not detected at or above the detection limit

 Note: Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.

PCBs by GC - MS

Sample ID: TB08087-001 Batch: 64516 Analytical Method: 8082A	MS			•	p Metho	ix: Solid od: 3550C ate: 02/14/2	018 1648	Cleanup:	3660B/3665A
Parameter	Sam Amo (mg	•	Spike Amount (mg/Kg)	Result (mg/Kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Aroclor 1016	0		0.12	0.31	Ν	10	252	70-130	02/15/2018 1046
Aroclor 1260	0		0.12	0.12		10	98	70-130	02/15/2018 1046
Surrogate	Q	% Rec		eptance imit					
Decachlorobiphenyl		55	4	1-132					
Tetrachloro-m-xylene		41	3	5-106					

PCBs by GC - MSD

Sample ID: TB08087-001MD Batch: 64516 Analytical Method: 8082A)			Р	rep N	letho	x: Solid d: 3550C te: 02/14/2	2018 1648		Cleanup:	3660B/3665A
Parameter	Sam Amc (mg	•	Spike Amount (mg/Kg)	Result (mg/Kg)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Aroclor 1016	0		0.13	0.43	N,+	10	340	31	70-130	20	02/15/2018 1059
Aroclor 1260	0		0.13	0.13	Р	10	105	7.9	70-130	20	02/15/2018 1059
Surrogate	Q	% Rec	Ac	ceptance Limit							
Decachlorobiphenyl		94		41-132							
Tetrachloro-m-xylene		79		35-106							

TCLP Metals - MB

Sample ID: TQ64381-001 Batch: 64381 Analytical Method: 6010D Matrix: Solid Prep Method: 1311/3010A Prep Date: 02/13/2018 1737 Leachate Date: 02/11/2018 1930

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Arsenic	0.0025	U	1	0.015	0.0025	mg/L	02/15/2018 1231
Barium	0.0044	J	1	0.025	0.0031	mg/L	02/15/2018 1231
Cadmium	0.0060		1	0.0050	0.00060	mg/L	02/15/2018 1231
Chromium	0.0013	U	1	0.010	0.0013	mg/L	02/15/2018 1231
Lead	0.013		1	0.010	0.0047	mg/L	02/15/2018 1231
Selenium	0.0085	U	1	0.020	0.0085	mg/L	02/15/2018 1231
Silver	0.0021	U	1	0.010	0.0021	mg/L	02/15/2018 1231

TCLP Metals - LCS

Sample ID: TQ64381-00 Batch: 64381 Analytical Method: 6010D	2		Pi	•	1311/3010A	37 Leachate Dat	e: 02/11/2018 1930
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Arsenic	50	47		1	93	80-120	02/15/2018 1236
Barium	100	94		1	94	80-120	02/15/2018 1236
Cadmium	10	9.3		1	93	80-120	02/15/2018 1236
Chromium	50	50		1	101	80-120	02/15/2018 1236
Lead	50	48		1	97	80-120	02/15/2018 1236
Selenium	10	9.4		1	94	80-120	02/15/2018 1236
Silver	10	10		1	100	80-120	02/15/2018 1236

Sample ID: TQ64353-001	Matrix: Solid
Batch: 64353	Prep Method: 1311/7470A
Analytical Method: 7470A	Prep Date: 02/13/2018 1512 Leachate Date: 02/11/2018 1930

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Mercury	0.000091	U	1	0.00020	0.000091	mg/L	02/13/2018 2020

LOQ = Limit of Quantitation P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria + = RPD is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL LOD = Limit of Detection U = Not detected at or above the detection limit Note: Calculations are performed before rounding to avoid round-off errors in calculated results Shealy Environmental Services, Inc.

TCLP Metals - LCS Sample ID: TQ64353-002 Matrix: Solid Prep Method: 1311/7470A Batch: 64353 Prep Date: 02/13/2018 1512 Leachate Date: 02/11/2018 1930 Analytical Method: 7470A Spike % Rec Amount Result Limit Parameter (mg/L) (mg/L) Q Dil % Rec Analysis Date 0.020 Mercury 0.021 1 107 80-120 02/13/2018 2023

Chain of Custody and Miscellaneous Documents

Analysis (Alex) of the first of	Ielephone No. 803-191-9700 www.shealyla Asport to Canaco, 57EVE
ACTION MARKEN AND A CONTRACT A CO	the second
HI-HULX JN-JOLX JN2JOLX JN2JOLX JN2LX J	E
Hall X Marcolar X	
	Al hav
	Turn Around Time Required (Prior isb approval required for acpedited TAL) Sample Disposal
Poestole Hazard (Gentification	
Disposed by Lab Nor-Hazard Identification Disposed by Lab Hort-Hazard Eftimate Skin (ritiant Possion Unitroben Tame 1. Agaptived by Tame	3112
Presettie Hazard Identification Mon-Hazard Identification I dent-Hazard Identification 1 dent-Hazard Identification 1 dent-Hazard Identification 2 Recentres Park 2 Rece	8. E.L.
Image: State of the state o	
Consistent Consistent Consistent Consistent Consistent Construction Construction Con	Note: All samples are retained for four weeks from receipt

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc. Document Number: ME0018C-11 Page 1 of 1 Effective Date: 01/19/2018

cument Nur	nber: ME001;	8C-11	Sample Receipt Checklist (SRC)						
Client:	503	5	Cooler Inspected by/date: <u>CBU / 2.8.18</u> Lot #: <u>TBU 8087</u>						
Means o	f receipt:	🛛 SE							
2 Yes	No		1. Were custody seals present on the cooler?						
[] Yes	🗌 No	∕ZNA	2. If custody seals were present, were they intact and unbroken?						
oH Strip	H Strip ID: Chlorine Strip ID:								
Cooler I	Cooler ID / Original temperature upon receipt / Derived (Corrected) temperature upon receipt:								
/_	/ / °C / / °C / / °C								
Method:	Method: Temperature Blank Against Bottles IR Gun ID: 6 IR Gun Correction Factor: 0 °C								
Method	Method of coolant: Wet Ice 🗌 Ice Packs 🗍 Dry Ice 🛄 None								
T Yes	D No	⊠'NA	 If temperature of any cooler exceeded 6.0°C, was Project Manager Notified? 						
			PM was Notified by: phone / email / face-to-face (circle one).						
Yes Yes	No No	⊠NA	Is the commercial courier's packing slip attached to this form?						
Yes	and a second second		5. Were proper custody procedures (relinquished/received) followed?						
7 Yes	🗌 No		6. Were sample IDs listed on the COC?						
Z Yes	🗌 🗋 No		7. Were sample IDs listed on all sample containers?						
Z Yes	No 🗆 No		8. Was collection date & time listed on the COC?						
Z Yes	No 🗆 No		9. Was collection date & time listed on all sample containers?						
Z Yes	No		10. Did all container label information (ID, date, time) agree with the COC?						
Z Yes	No 🛛		11. Were tests to be performed listed on the COC?						
Z Yes	12. Did all samples arrive in the proper containers for each test and/or in good condition								
Yes	s 🗆 No		13. Was adequate sample volume available?						
12 Yes			14. Were all samples received within 1/2 the holding time or 48 hours, whichever comes first?						
	Yes No 15. Were any samples containers missing/excess (circle one) samples Not listed on COC?								
	$\Box Yes \Box No \Box NA = 16. For VOA and RSK-175 samples, were bubbles present >"pea-size" ('4" or 6mm in diameter) in any of the VOA vials?$								
□ Ye	Yes No X NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2?								
Ye:	- Annual -	ZNA	18. Were all evanide samples received at a pH > 12 and sulfide samples received at a pH > 9?						
□ Ye			10. Wore all applicable NH /TKN/cvanide/phenol/625 ($< 0.5mg/L$) samples free of residual						
		4	20 War alignet some de la requeste di lutions MS/MSD designations etc)						
∏ ∏ Ye	s 🗆 No	1 🗹 NA	correctly transcribed from the COC into the comment section in LIMS?						
1 Ye	s 🛛 No		21. Was the quote number used taken from the container label?						
	Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)								
Sample	x(s)		were received incorrectly preserved and were adjusted accordingly						
	in sample receiving with (H ₂ SO ₄ , HNO ₃ , HCl, NaOH) using SR #								
Sample	:(s)		were received with bubbles >6 mm in diameter.						
Sample	es(s)		were received with TRC > 0.5 mg/L (If #19 is no) and were						
adjuste	d accordi	ngly in so	ample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID:						
SR bar	SR barcode labels applied by: CBW Date: Date: Date:								
Comm	Comments:								

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page 1 of 2

Requested Disposal Facility:5010 Charlotte Motor Speedway LF NC					Waste Profile #		
aveable fill-in form. Restricted printing until all required (yellow) fields are completed. Generator Information				Sales Rep #:			
Generator Name: City of Ch							
Generator Site Address: 1	536 Tyvola Road						
				lorth Carolir	Zip: 28217		
State ID/Reg No: State Approval/Waste Code: (if applicable) NAICS # :					NAICS # :		
Generator Mailing Address (i	f different): 🖌 600 E	East Fourth Stree	t			• • • • • • • • • • • • • • • • • • • •	
City: Charlotte		lenburg		North Caroli	na	Zip: 28202	
Generator Contact Name: D	oug Pierotti			Email: c	dpierotti@	charlottenc.gov	
Phone Number: (704) 432-5	212	Ext:	Fax Number: (704) 336-4554			54	
. Billing Information							
Bill To: SCS Engineers			Contact	Name: Ste	eve Lamb)	
Billing Address: 2520 White	hall Park Drive	<u> </u>		· · · · · · · · · · · · · · · · · · ·		csengineers.com	
City: Charlotte	State: NC		Zip: 282			(704) 504-3170	
Name of Waste: Former Yor) Landfill Municipa	al Solid Wa	aste (MSW)	drilling w	vaste	
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme	rk Rd (Renaissance) r MSW from closed `	York Road landfil	l explorato	ory drilling			
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste:	rk Rd (Renaissance) r MSW from closed ` ☑ INDUSTRIAL P	York Road landfil	I explorato		CONTRO		
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State:	rk Rd (Renaissance) r MSW from closed ` ☑ INDUSTRIAL P ☑ SOLID □ SE	York Road landfil PROCESS WAST	I explorato		CONTRO		
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment:	rk Rd (Renaissance) r MSW from closed ` ☑INDUSTRIAL P ☑SOLID □SE □BULK ☑DRU	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE	I explorato		CONTRO		
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment: Estimated Annual Volume:	rk Rd (Renaissance) r MSW from closed ` ☑ INDUSTRIAL P ☑ SOLID SE BULK ☑ DRU 5	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE Dr	I explorato		CONTRO		
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment: Estimated Annual Volume: Frequency:	rk Rd (Renaissance) r MSW from closed ` ☑ INDUSTRIAL P ☑ SOLID □ SE □ BULK ☑ DRU 5 ☑ ONE TIME □	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE Dr ONGOING	I explorato	DILLUTION C	CONTRO		
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment: Estimated Annual Volume: Frequency:	rk Rd (Renaissance) r MSW from closed ` ☑ INDUSTRIAL P ☑ SOLID □ SE □ BULK ☑ DRU 5 ☑ ONE TIME □	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE Dr	I explorato		CONTRO		
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment: Estimated Annual Volume: Frequency: Disposal Consideration: V. Representative San	rk Rd (Renaissance) r MSW from closed ` ☑ INDUSTRIAL P ☑ SOLID SE BULK ☑ DRU 5 ☑ ONE TIME ☑ LANDFILL ■	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE Dri]ONGOING]SOLIDIFICATIC	I explorato				
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment: Estimated Annual Volume: Frequency: Disposal Consideration: V. Representative San is the representative sample	rk Rd (Renaissance) r MSW from closed ` INDUSTRIAL P SOLID SE BULK ØDRU 5 ONE TIME LANDFILL Collected to prepare U.S. EPA 40 CFR 2	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE Dri ONGOING SOLIDIFICATIC SOLIDIFICATIC	I explorato		CONTRO) ATION		
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment: Estimated Annual Volume: Frequency: Disposal Consideration: V. Representative Sam is the representative sample collected in accordance with Type of Sample: []COMPO	rk Rd (Renaissance) r MSW from closed ` ✓ INDUSTRIAL P ✓ SOLID SE BULK ✓ DRU 5 ✓ ONE TIME ✓ LANDFILL Collected to prepare U.S. EPA 40 CFR 2	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE Dri ONGOING SOLIDIFICATIC	I explorato		CONTRO) ATION	L WASTE	
Name of Waste: Former Yor Process Generating Waste: Waste generated from forme Type of Waste: Physical State: Method of Shipment: Estimated Annual Volume: Frequency: Disposal Consideration:	rk Rd (Renaissance) r MSW from closed ` ✓ INDUSTRIAL P ✓ SOLID SE BULK ✓ DRU 5 ✓ ONE TIME ✓ LANDFILL Collected to prepare U.S. EPA 40 CFR 2	York Road landfil PROCESS WAST MI-SOLID F UM BAGGE Dri ONGOING SOLIDIFICATIC SOLIDIFICATIC	I explorato		CONTRO) ATION	L WASTE	

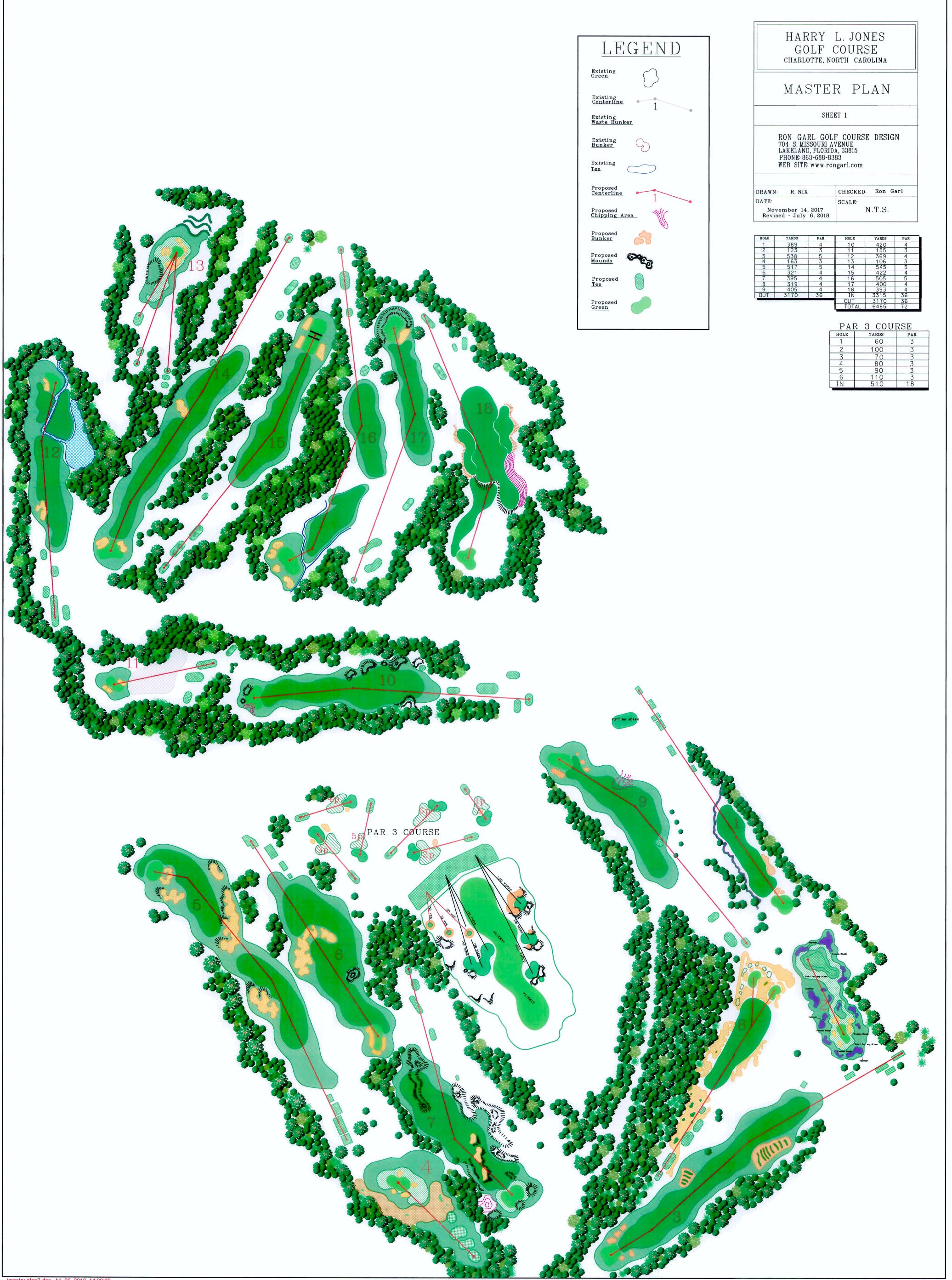
		Waste Profile #						
V. Physical Characteristics of Waste								
	Characteristic Components % by Weight (range)							
1. MSW			50					
2. Soil 3.			50					
4.								
5.								
Color	Odor (describe)	Does Waste Contain Free Liquids?	% Solids	pH:	Flash Poin		nt	
Various-black	MSW	YES or VINO	100	NA		NA	°F	
Attach La		port (and/or Material Safety Data quired Parameters Provided for t		ng Chain	of Cus	stody and		
Does this waste or generating process contain regulated concentrations of the following Pesticides and/or Herbicides: Chlordane, Endrin, Heptachlor (and its epoxides), Lindane, Methoxychlor, Toxaphene, 2,4-D, or 2,4,5-TP Silvex as defined in 40 CFR 261.33?							D	
	Does this waste contain reactive sulfides (greater than 500 ppm) or reactive cyanide (greater than 250 ppm)[reference 40 CFR 261.23(a)(5)]?						C	
Does this waste of Part 761?	Does this waste contain regulated concentrations of Polychlorinated Biphenyls (PCBs) as defined in 40 CFR Part 761?						c	
Does this waste contain concentrations of listed hazardous wastes defined in 40 CFR 261.31, 261.32, 261.33, including RCRA F-Listed Solvents?						es or 🔽 No	c	
Does this waste exhibit a Hazardous Characteristic as defined by Federal and/or State regulations?						Yes or V No		
Does this waste contain regulated concentrations of 2,3,7,8-Tetrachlorodibenzodioxin (2,3,7,8-TCCD), or any other dioxin as defined in 40 CFR 261.31?						C		
Is this a regulated Radioactive Waste as defined by Federal and/or State regulations?						C		
Is this a regulated Medical or Infectious Waste as defined by Federal and/or State regulations?						C		
Is this waste a re	Is this waste a reactive or heat generating waste?						C	
Does the waste o	contain sulfur or sulfur by-pi	oducts?		Level to burden	Yes or No		C	
Is this waste gen	erated at a Federal Superfu	Ind Clean Up Site?			ΠY	es or 🔽 No	2	
Is this waste from a TSD facility, TSD like facility or consolidator?							כ	

VI. Certification

... -


I hereby certify that to the best of my knowledge and belief, the information contained herein is a true, complete and accurate description of the waste material being offered for disposal and all known or suspected hazards have been disclosed. All Analytical Results/Material Safety Data Sheets submitted are truthful and complete and are representative of the waste.

I further certify that by utilizing this profile, neither myself nor any other employee of the company will deliver for disposal or attempt to deliver for disposal any waste which is classified as toxic waste, hazardous waste or infectious waste, or any other waste material this facility is prohibited from accepting by law. I shall immediately give written notice of any change or condition pertaining to the waste not provided herein. Our company hereby agrees to fully indemnify this disposal facility against any damages resulting from this certification being inaccurate or untrue.


I further certify that the company has not altered the form or content of this profile sheet as provided by Republic Services Inc.

Doug Pierotti, Senior Project Manager	City of Charlotte
Authorized Representative Name And Title (Type or Print)	Company Name
Way Poulle for Cety of Charlotte	3-1-2018
Authorized Representative Signature	Date
\bigcirc \frown \frown \frown \frown \frown	

Appendix B

...\master plan2.dgn Jul. 06, 2018 14:08:39

Appendix C

HARRY L. JONES GOLF COURSE 18 HOLE GOLF COURSE RENOVATION PRELIMINARY COST ESTIMATE Prepared by RONALD M. GARL GOLF COURSE DESIGN, INC. 704 SOUTH MISSOURI AVENUE LAKELAND, FLORIDA PHONE: (863) 688-8383 July 6, 2018

COST

100,000 1. Selective Clearing (Allowance) 2. Strip Existing Turf from Tees, including Driving Range Tee Haul & Dispose of (160,000 sq.ft. x \$.20 sq.ft.) Sod removed - Hauled and disposed of In House -0-3. Strip Existing Turf from Greens Surfaces, Haul & Dispose of (130,000 sq.ft. x \$.20 sq.ft.) -0-Sod removed - Hauled and disposed of In House 4. Remove Old Greens Mix to a depth of 12 inches -0-& Haul to Tees – In House 4a. Spread old greens mix & float (4,775 c.y. x \$5 c.y.) 23,875 5. Strip Top Soil and stockpile – Holes #10 & #14 - 1 ft. deep = 1,600 c.y. x 4/ac x \$2 12,800 6. Hole #10 & #14 - cut 2/ac on each hole 2.5' deep = 16,000 c.y. x \$3 c.y. 48,000 7. Move existing fill from greens and features on the golf course Holes #1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 & 17 2,000 c.y. per hole x 13 holes = 26,000 c.y. x \$3 c.y.) 78,000 8. Reshape and deepen lake at Green #12 (28,000 s.f. = 6,216 c.y. x \$5.00 c.y.) 31,080 9. **Rock Excavation – to be determined by Owners' Rep – Del Ratcliffe -0-10. Earthwork – Move Soil from Stockpile to the Golf Course – 72,000 c.y. (a) \$3 216,000 11. Rotadarion Existing Tees, Fairways and Rough – (94/ac x \$1,100/ac) 103,400 200,000 12. Rough Shaping – 18 holes, Short Game Area & Driving Range 13. New Automatic Irrigation System – (1,000 heads x \$1,100 per head) 1,100,000 -0-14. Pump Station for Irrigation Distribution (Recently Upgraded)

Page | 1

.

CONSTRUCTION ITEM

15. Remove & Dispose of existing greens drainage pipe and gravel – $(18 \times 1,000/\text{hole})$	18,000
16. Rototill Green Sub-Grade - 18 holes, Putting Green & Short Game x \$200/hole	4,000
17. New USGA Greens Construction with Granite – 150,000 sq.ft. x \$6 sq.ft.	900,000
18. Four-inch Green Outfall Pipe – 150 l.ft. x 25 greens = 3,750 l.ft. @ \$6/l.ft.	22,500
19. Four-inch Fairway Perforated Pipe with Granite Rock – 4,500 l.ft. x \$7.50 l.f.	33,750
20. Catch Basin – 50 units x \$300 ea.	15,000
21. Outfall Pipe – 50 units x 100 ft. x \$8 ft./av.	40,000
22. Fine Shaping	360,000
23. Plating Topsoil – Holes #10 & #14 - 1 ft. deep = 1,600 c.y. x 4.0 acres x \$2	12,800
24. Laser Level Tee Tops including Range Tee – (176,000 sq.ft. @ \$.15 sq.ft.)	26,400
25. New Bunker Construction (includes sand & drainage – 200,000 sq.ft. x \$2 sq.ft.)	400,000
26. Installation of new outfall pipe -81 bunkers x 150 l. ft. = 12,150 x \$6	72,900
27. Dispose of rock and pipe from existing bunkers 18 holes x \$500 ea.	9,000
28. Cart Paths – Allowance – Owner's and Engineer's Responsibility	475,000
29. Grassing - Sprig Tees (Celebration - 176,000 sq.ft. @ \$.16 sq.ft Hand Plant	28,160
 Grassing - Sprig Fairways including Range (Celebration – 54/ac @ 600 bushels/ac x \$1,500/ ac) 	81,000
31. Grassing - Sprig Roughs (Celebration – 40/ac @ 600 bushels/ ac x \$1,500/ac)	60,000
32. Grassing - Sod (Celebration – 750,000 sq.ft. x \$.55 sq.ft.)	412,500
33. Grassing - Sprig Putting Surfaces & Collars (Mini-Verde – 180,000 sq.ft. x \$.52 sq.ft.)	93,600
34. As-builts	7,500
35. Mobilization, Site prep, Housing, Overhead and Management	<u>155,000</u>
SUB-TOTAL	5,140,265
Contingency – 15%	771,039
TOTAL	5,911,304

- * Cubic yards, sq.ft. & acreage are an estimate <u>only</u> and shall be revised upon a completed Golf Course Grading Plan.
 ** Rock Excavation not included.

NOTES:

- a) This estimate does not charge any environmental work to the golf course.
- b) This preliminary estimate will vary for each site depending on specific site conditions.
- c) This estimate represents the golf course designer's best judgement as a design professional familiar with the golf course construction industry. It is recognized, however, that the golf course designer has no control over the contractor's method of determining bid prices or over competitive bidding or negotiating conditions. While the golf course designer cannot and does not warrant or represent that bids or negotiated prices will not vary from the Preliminary Cost Estimate, the Preliminary Cost Estimate represents the golf course designer's best, good faith estimate of construction costs based upon his knowledge of current market conditions and construction techniques.
- d) The owner shall include a contingency amount (as a percentage of the total) which would be applicable to the project, the projects' location, its features and difficulty of the site.
- e) SCS Engineers to determine Best Methods and Means to correct as best as possible the settling on the golf course. This includes any and all drainage, cart paths, Geo Technical fabric to be used on the golf course and etc., etc., etc., etc. and cost for these items. (We have put in an estimate only to move the project along.)

OWNER'S RESPONSIBILITIES

OWNER'S RESPONSIBILITIES:

- 1. New 6" Topography Map
- 2. Survey for Centerlines & to Establish Benchmarks (to be done prior to start of construction)
- 3. Survey to Verify Fill on the Golf Course
- 4. Survey to Verify Cut on the Back 9 Holes
- 5. Maintenance Equipment additional
- 6. Landscaping
- 7. Golf Course Construction Contingency
- 8. Golf Course Architect fee
- 9. Professional Fees:
 - Civil Engineer
 - Environmental Engineer
 - Geotechnical Engineer
 - Landscape Architect
 - and Others
- 10. Project Manager- Owner's Representative
- 11. Fees Permits and Recording
- 12. Easement Locations
- 13. Signage, Markers, Trash Containers, Benches, Etc.
- 14. Advertising & Promotional Expenses
- 15. Grow-In
- 16. Grand Opening
- 17. Etc.

Harry L. Jones, Jr. Golf Preliminary Construction Cost Estimate Landfill Related Items

	Description	Quantity	Unit	Unit Cost	Extended Cost	Comments
1	Tees and Greens					
1.1	Synthetic Liner for Tee and Greens	60,000	SF	\$1.50	\$90,000	assumes 8 greens at 7,500 sf each
1.2	Perforated Pipe for Tee and Greens	2,000	LF	\$8	\$16,000	
1.3	Extra Sand Layer Under Liners	500	СҮ	\$30	\$15,000	assume 6" layer underneath all liners
				Subtotal	\$121,000	
2	Soil Surcharging for Fairways, Tees a	and Greens.				
2.1	Move and Place Soil	129,000	СҮ	\$3.50	\$451,500	
2.2	Compact Soil	129,000	СҮ	\$0.50	\$64,500	
2.3	Survey and Monitoring	1	LS	\$40,000	\$40,000	
2.4	Remove Soil	64,500	СҮ	\$1.50	\$96,750	assumes 1/2 of surcharge soil remains in place.
				Subtotal	\$637,750	
3	Rapid Impact Compaction for Cart P	aths				
3.1	Mobilization	1	ls	\$50,000	\$50,000	
3.2	Compaction	90,000	sf	\$3	\$270,000	assumes 3,000 yds of new cart paths.
3.3	Compacted fill, 3 ft x 8 ft	8,000	су	\$4	\$32,000	assume 3 ft of settlement
				Subtotal	\$352,000	
4	Geogrid Reinforcement	100,000	sf	1.25	\$125,000	For select cart paths, tees, and fairways.
				Subtotal	\$125,000	
				Subtotal	\$1,235,750	
		Mis	cellane	ous at 10%	\$123,575	
		Co	ontinge	ncy at 10%	\$123,575	
				Total	\$1,483,000	